
 .PROGRAMMING THE FPGA using BORPH

 : . & Written By Shri Irappa M Halagali : 16/06/2011.Date

 . , . . (:// . . / /)M Wagner J Manley and W New https casper berkeley edu wiki Tutorials

 : Note This colour : . used for Main titles

 This colour : / - .used for sub sub sub titles

 This colour : .used for command lines

 This colour : .used for the response from the ROACH in minicom or from the PC

 This colour : / / . used for procedure writeup information note

1. / / / _ / Copy the bof file to be programed in the srv roachboot etch devel boffiles area of
 the pc

 . eg @ 4:~/ / / / 1/ _ $gmrt rchpc IRU WORKSHOP PROJECTs tutorial bit files
 1_2011_ _09_1628. / / / _ / cp tutorial Jun bof srv roachboot etch devel boffiles

 : / /* .Note All these cable connections and entries in the etc files of the workshop PCs done

2. ' 2 Connect the Serial port cable between the ROACH board s P connector and serial port of
 ().the PC on which minicom program exists

3. 25 1 .Connect the Ethernet cable to J port of the ROACH board from the PCs eth port
/ / . etc ethers file should have mac address and corresponding ip address In the
/ / / , 1 . / / , etc network interfaces file eth should be configured And in the file etc hosts ip

 () . address and corresponding roach board host name entry to be done

4. . / / /. Start the minicom program It is kept in the usr bin

. eg [@ 3 ~]$irappa corrdevel minicom

 Initializing Modem

 2.2 Welcome to minicom

: 18 OPTIONS I n

 9 2007, 07:21:40. Compiled on Mar

 / / 0 Port dev ttyS

 - . Press CTRL A Z for help on special keys

 : NOTE + Press CTRL A ; .and then Z to get Minicom command summary

 Then press W / . for Line Wrap ON OFF This enables us to see the messages
 - .from the ROACH board during BOOT UP

5. Switch ON the ROACH .. board Refer the the file “ _ _ 1_ 3.Roach BOOT proc V pdf ” for
 . .complete boot procedure of the ROACH BOARDs For this purpose it is not required to refer

6. 030172 :roach login root # / .login as root w o any password

7. @ 030172:~#root roach /cd

8. @ 030172:/#root roach /cd boffiles

9. @ 030172:/ #root roach boffiles ls
 10 7. a fft bof

 10 8.a fft bof

 1_2011_ _09_1628.tutorial Jun bof

@ 030172:/ #root roach boffiles

10. @ 030172:/ #root roach boffiles ./ 1_2011_ _09_1628. &tutorial Jun bof
[1] 230

@ 030172:/ #root roach boffiles

 ! Our FPGA is now programmed and we have our prompt back

 !!!Look at the output ie LED on the ROACH board is blinking

 ... We can now see that a process in Linux has started

11. @ 030172:/ #root roach boffiles ps aux

 % % USER PID CPU MEM VSZ RSS TTY STAT START TIME COMMAND

 284 0.1 0.0 0 0 ? 07:36 0:00 [2_ _ 3] root SN jffs gcd mtd

 301 0.0 0.2 6700 1160 ? 07:36 0:00 / / / root Ss usr sbin sshd

 311 0.0 0.0 784 192 ? 07:36 0:00 root S tcpborphserver

 318 0.1 0.2 3772 1188 0 07:36 0:00 / / - root ttyS Ss bin login root

319 0.1 0.3 3516 1796 0 + 07:36 0:00 - ttyS S bash

 323 0.0 0.0 1632 304 0 07:36 0:00 ./ 1_2009_ _14_1140. root ttyS S tut Aug bof

 325 4.4 0.5 10000 2672 ? 07:36 0:00 : @ /0 root Ss sshd root pts

 328 0.8 0.3 3524 1800 /0 07:36 0:00 - root pts Ss bash

 332 0.0 0.1 2780 996 /0 + 07:37 0:00 root pts R ps aux

@ 030172:/ # root roach boffiles

 230 () . Notice that PID yours may be different is our process We can now navigate to
 . the proc directory which contains our software registers

12. @ 030172:/ #root roach boffiles / /230/ / / cd proc hw ioreg # Pl chage the PID nuber

13. @ 030172:/ /323/ / #root roach proc hw ioreg - ls al

 0 total

- - - 2 0 21 08:00 . dr xr xr x root root Aug

- - 2 0 21 08:00 .. drwxr xr x root root Aug

- - - -1 4 21 08:00 rw rw rw root root Aug a

- - - -1 4 21 08:00 rw rw rw root root Aug b

- - - -1 4 21 08:00 _ 1 rw rw rw root root Aug Counter ctrl

- -- -- --1 4 21 08:00 _ r r r root root Aug Counter value

- -- -- --1 4 21 08:00 _ _ r r r root root Aug sum a b

- - - -1 4 21 08:00 _ _ rw rw rw root root Aug sys board id

- - - -1 4 21 08:00 _ rw rw rw root root Aug sys clkcounter

- - - -1 4 21 08:00 _ rw rw rw root root Aug sys rev

- - - -1 4 21 08:00 _ _ rw rw rw root root Aug sys rev rcs

- - - -1 4 21 08:00 _ rw rw rw root root Aug sys scratchpad

@ 030172:/ /323/ / # root roach proc hw ioreg

 . , , _ ,Now you can see all our software registers We have a b counter ctrl
_ _ _ . , , counter value and sum a b as expected However in addition the toolflow has

 . automatically added a few other registers

_ _ sys board id is simply a constant which allows software to identify what hardware
 . , 0 00 001. platform is running For ROACH this is a constant xb b

_ 32- sys clkcounter is a bit counter that increments automatically on every FPGA
 . ' . clock tick This allows software to estimate the FPGA s clock rate Useful for debugging

 . boards with bad clock inputs

_ , sys rev is not yet implemented but will eventually indicate the revision of the
 software toolchain that was used to compile the design

_ _ , sys rev rcs is also not yet implemented but will eventually indicate the SVN
 . revision of the CASPER library that was used to compile your design

_ / sys scratchpad is simply a read write software register where you can write a
 . register and read it back again as a sanity check

 Communicating with your FPGA process in BORPH

 . -The registers contain binary data To read and represent these on our text based
, , terminal we will use a Linux utility called hexdump which simply prints out the ASCII

 (-16) . , ' representation of hex values base in binary files To write into these files we ll use
' . , Linux s echo utility Echo does not support writing hex values but does support octal

(-8). base

 COUNTER

' . ' , Let s start by having a look at our counter value Since we haven t started it yet we
 . expect it to be zero

1. @ 030172:/ /230/ / #root roach proc hw ioreg _ hd Counter value

00000000 00 00 00 00 |....|
00000004

@ 030172:/ /230/ / # root roach proc hw ioreg

 32 .We notice that the register is indeed bits long and that it contains the value zero
 , The column on the left tells us the memory addresses while the four space separated

 4 (32) values on the right give us the byte bit value of the software register in
. , . ,hexadecimal Right now both registers report all zeros According to our Simulink design

 _ 0 1 . we can disable or enable the counter by setting cnt en to or respectively

' . Let s now start the counter and watch it increment

2. @ 030172:/ /230/ / # root roach proc hw ioreg - - "\000\000\000\001" > _ 1echo n e Counter ctrl

 (-Here we have told echo not to append a newline character to the end of the line

), ' (\0 n and told it to interpret the incoming string s escape characters specifies octal
). ' _ 1. ' ... values Then we pipe it s output into counter ctrl Now let s relook at the counter value

3. @ 030172:/ /230/ / #root roach proc hw ioreg _ hd Counter value

00000000 12 42 da de |.. .| B

00000004

4. @ 030172:/ /230/ / #root roach proc hw ioreg _ hd Counter value

00000000 32 7 3 dd c c |.. .<|w

00000004
 '' '' '' '' '' '' '' '' ''

 , You can see that the counter is indeed incrementing and that it is happening very
 (' 100 , quickly remember that it s incrementing by million every second since the FPGA is
 100). running at MHz

0 1242 = 14291522 xda de . in decimal

0 327 3 = 3711073340 xdd c c . in decimal

 2^32-1 You should see the register values increasing until they reach and then
. ... repeat Resetting the counter has the desired effect

5. @ 030172:/ /230/ / #root roach proc hw ioreg - - "\000\000\000\002" > _ 1echo n e Counter ctrl

6. @ 030172:/ /230/ / #root roach proc hw ioreg _ hd Counter value

00000000 00 00 00 00 |....|
00000004

@ 030172:/ /230/ / #root roach proc hw ioreg

 :ADDER

' : , 'Let s now consider our adder All registers initialise to zero upon startup so we d
 . expect a and b to be zero now

7. @ 030172:/ /230/ / #root roach proc hw ioreg hd a

00000000 00 00 00 00 |....|
00000004

8. @ 030172:/ /230/ / #root roach proc hw ioreg hd b

00000000 00 00 00 00 |....|
00000004

, . ' Indeed this is the case Let s write something in there now and have a look at the
. ' 5 12, 17. 0 , 0 0output Let s add and so we expect We use x to indicate hex o for octal and b

 . . for binary No prefix indicates decimal

05 = 0 05 = 0 05 o x

12 = 0 14 = 0 0 o x c

17 = 0 21 = 0 11 o x

 : \0 \005 5 & \014 12.Note Inpu the data as OCTAL by using eg for decimal for
9. @ 030172:/ /230/ / #root roach proc hw ioreg - - "\000\000\000\005" > echo n e a

10. @ 030172:/ /230/ / #root roach proc hw ioreg - - "\000\000\000\014" > echo n e b

11. @ 030172:/ /323/ / #root roach proc hw ioreg hd a

00000000 00 00 00 05 |....|
00000004

12. @ 030172:/ /323/ / #root roach proc hw ioreg hd b

00000000 00 00 00 0 |....| c

00000004

13. @ 030172:/ /323/ / #root roach proc hw ioreg _ _ hd sum a b

00000000 00 00 00 11 |....|
00000004

 : \ . \005 5 & \ 0 12.Note Inpu the data as HEXADECIMAL by using x eg for decimal x c for

14. @ 030172:/ /230/ / #root roach proc hw ioreg - - "\000\000\000\ 05" > echo n e x a
15. @ 030172:/ /230/ / #root roach proc hw ioreg - - "\000\000\000\ 0 " > echo n e x c b

16. @ 030172:/ /323/ / #root roach proc hw ioreg hd a

00000000 00 00 00 05 |....|
00000004
17. @ 030172:/ /323/ / #root roach proc hw ioreg hd b

00000000 00 00 00 0 |....| c

00000004
18. @ 030172:/ /323/ / #root roach proc hw ioreg _ _ hd sum a b

00000000 00 00 00 11 |....|
00000004

@ 030172:/ /323/ / # root roach proc hw ioreg

 ! .Great Exactly as expected

 This shows you a basic view of BORPH and interfacing to the proc files directly from
 . the ROACH using Linux utilities This method of accessing the shared memory and registers

 , is good for quick verification that your design is running and loaded correctly but for more
 , , advanced command control and data acquisition we recommend using the

 . tcpborphserver and KATCP that starts up automatically when booting ROACH

 .PROGRAMMING THE FPGA using KATCP

 KATCP is a process running on the ROACH boards which listens for TCP connections
 7147 (). - . on port tcpborphserver It talks using machine parseable ASCII text strings It was

 ,designed this way so that it is easy to debug by watching the exchange of network traffic
 . while still being easy to program clients and servers

1. Copy the bof file to be programed in the / / / _ /srv roachboot etch devel boffiles area of
 the pc

 . eg @ 4:~/ / / / 1/ _ $gmrt rchpc IRU WORKSHOP PROJECTs tutorial bit files
 1_2011_ _09_1628. / / / _ / cp tutorial Jun bof srv roachboot etch devel boffiles

 : / /* .Note All these cable connections and entries in the etc files of the workshop PCs done

2. 25 1 .Connect the Ethernet cable to J port of the ROACH board from the PCs eth port
/ /etc ethers . file should have mac address and corresponding ip address In the
/ / /etc network interfaces 1 . file eth should be configured And in the file / /etc hosts ip

 () . address and corresponding roach board host name entry to be done

3. .Switch ON the ROACH BOARD Refer the file “ _ _ 1_ 3.Roach BOOT proc V pdf ” for the
 .complete boot procedure of the ROACH BOARDs

4. From the PC connect to the ROACH via net using the command
 < > < #> telnet ROACH IP assigned port : # 7147 .note port is decided by protocol

. eg [@ 3 ~]$irappa corrdevel 192.168.100.72 7147telnet
 192.168.5.251... Trying

 192.168.5.251. Connected to

 '^]'. Escape character is : +] (]) Toquit from this Press “CTRL” “ ” bracket

 . .then enter And then quit from it

-0.1 version poco

- -0.0 271150300 build state poco a

5.?listbof : (*.) . .Tosee the BORPH bof files on the ROACH for programming FPGA Pl
 ? .notice that commands are starting with in the front

 10 7. a fft bof

10 8. a fft bof

1_2011_ _09_1628.tutorial Jun bof

! 161listbof ok

6.? < >progdev borph file : . This puts the bof program file in the FPGA

. eg ? 1_2011_ _09_1628.progdev tutorial Jun bof

! 231progdev ok

7. ? listdev

_ _ listdev sum a b

listdev b

listdev a

_ listdev Counter value

_ 1 listdev Counter ctrl

_ listdev sys clkcounter

_ listdev sys scratchpad

_ _ listdev sys rev rcs

_ listdev sys rev

_ _ listdev sys board id

! listdev ok

 . Here you can see we have the same list as we had before in BORPH

, Normally machines using this interface would read and write to these registers
 . , using raw binary numbers using the read or write commands For manual interaction there

 are wordwrite and wordread commands which do the same with ASCII hex representations
 32- . ' . of bit values Let s try and add two numbers together now

8. ? 0 0 02 wordwrite a x

! wordwrite ok

9. ? 0 0 07 wordwrite b x

! wordwrite ok

10. ? _ _ 0 wordread sum a b

! 0 9 wordread ok x

 . You may be wondering what the extra zero in the arguments is for This is the index
. , . offset It is used when writing to blocks of memory rather than software registers For

, 32 1 , example if you wanted to write a single bit number into a GB DRAM memory chunk at
 0 12808, ? < _ > 0 12808 < _ >. address x you would say wordwrite my dram x my value

 , As you can see the same FPGA functions that are available in BORPH are accessible
 , through KATCP with the difference that it can be configured remotely over a TCP network

. stream

 Conclusion

 1. ,This concludes Tutorial You have learnt how to constuct a simple Simulink design
 . transfer the files to a ROACH board and interact with it using BORPH and KATCP

 2, 10 In Tutorial you will learn how to use the GbE network interfaces and interact
 .with your design using the KATCP Python client

