
CASPER Workshop
Tutorial 7: Implementation of a Green Block

Dev. By : Jason Manley, Mekhala Muley

Doc. By : Mekhala V. Muley gmrt/ncra/tifr

Expected completion time: 3hrs

Contents:

1. The Hardware and software required for this tutorial
2. Introduction
3. Background
4. Setup
5. Creating Your Design
6. Simulation
7. Testing of the block on ROACH
8. Writing a MATLAB script
9. Conclusion

1 The Hardware and software required for this tutorial.

1. PC : Dell Intel(R) Core(TM) i3 CPU 530 @ 2.93GHz width 64 bit & 4GB RAM

2. OS : Linux 2.6.35-30-generic #54-Ubuntu 10.10 SMP x86_64 GNU/Linux

3. Matlab : 2008a

4. Xilinx : version 11.5
5. Casper : gits_100511

6. corr pack : corr-0.6.5

7. Python : version 2.6

8. minicom : version 2.4 (compiled on Jun 3 2010)

9. ROACH unit : version 1.0 Rev 3 2009 ,
 uboot : uboot-2010-07-15-r3231-dram ,

 Linux Kernel Image : uImage-jiffy-20091110

Page 1 of 22

https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/uboot/uboot-2010-07-15-r3231-dram
https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/linux/uImage-jiffy-20091110

2 Introduction
In this tutorial, you will design a “green block” with a dynamic internal structure. This is done using
system generator blocks, blocks specific to ROACH board and a matlab script.

The first step will be to design a block using system generator block and do the basic functionality
check by simulating the design. Once the successful simulation is done, the design can be tested on
actual hardware for which you will need to compile the design. The compilation will generate a .bof
file which will be used for programming the board. The output from the actual hardware can be read
and plotted by a python script. This ensures that the block is working as expected on the hardware.

The final step will be to make it a parameterised block and write a matlab script for dynamically
changing internal structure of the block. At the end of this tutorial you will have a parameterised and
scripted green block.

3 Background

Various blocks in the CASPER library are parameterised blocks with dynamic internal structure. For
eg. consider the FFT block were the number of stages changes with the number of FFT points to be
performed. For such blocks replicating the internal structure every time is not the efficient method.
Hence a matlab script is written for redrawing such blocks where the internal structure is replicated
depending upon the parameter value.

In this tutorial Coarse delay block will be designed. This delay block will be designed for
simultaneous data inputs. The functionality of the coarse delay block is to delay the simultaneous
input data stream by specified number of clock cycles. This is acheived by writing the input data
samples in memory and reading them with an offset equal to the amount of delay required. This
block has dynamic internal structure which can be constructed using a matlab script. The internal
structure is replicated with increase in number of simulataneous input ports.

4 Setup
The lab at the workshop is preconfigured with the CASPER libraries, Matlab and Xilinx tools.
Please refer the file “LOCATIONSandFILES.pdf” in the home area or L OCATIONSandFILES
slides displayed , for the locations/directories and files information required in the tutorial.
Note : The Date and Time portion of the BOF file name will be different! It depends upon
when (Date & Time) you complile your model file !

Note : All these cable connections and entries in the /etc/* files of the workshop PCs done.You are
not required to do any of the following setup and they are informatory in nature. You can verify points
1 to 4 on the setup you are working on and if you have any doubts regarding them kindly contact the
lab instructor. Kindly go through point 5 to decide the way you will implement the tutorial.

1. Connect the Serial port cable between the ROACH board's P2 connector and serial port of the
PC (on which minicom program exists).

Page 2 of 22

2. Connect the Ethernet cable to J25 port of the ROACH board from the PCs eth1 port. /etc/ethers
file should have mac address and corresponding ip address. In the /etc/network/interfaces file ,
eth1 should be configured. And in the file /etc/hosts , ip address and corresponding roach
 board(host) name entry to be done.

3. This tutorial requires just the FPGA board and not the iADC board. The onboard clock of 100MHz
will be used for this tutorial.

4. The controlling PC should have following softwares installed in it :
• MATLAB (2008a)
• ISE 11.5
• System Generator 11.5
• Latest CASPER library

5. Create your own directory at “[USER_DIR]” , where you can save and compile your model file or
save any work that you may do. There are three ways to implement this tutorial.

A)You can either copy the mdl file “[TUT7_MDL_FILE]” from the the area “[STD_MDL_DIR]” to the
directory that you have created at “[USER_DIR]” and compile it in the MSSGE (Matlab-Simulink-
System Generator) environment
 OR
B)You can use the bof file kept in the area “[FPGA_PROG_BOF_DIR]/[TUT7_BOF_FILE]” to
directly program (using the python script explained in “Data acquisition”) the FPGA and look at the
results
 OR
C)Follow the steps given below to create the mdl file similar to the file “[STD_MDL_DIR]/
[TUT7_MDL_FILE]”.

6. Start the matlab :
 $ cd [MATLAB_START_DIR]

[MATLAB_START_DIR]$./[MATLAB_START_FILE] &

5 Creating Your Design
In this tutorial you will design a coarse delay block. The function of the block is to delay the input
data stream by specified number of clock cycles. This is acheived by writing the input data samples
in memory and reading them with an offset equal to the amount of delay required.

The block will have n-number of simultaneous input as well as output ports. The amount of delay is
provided dynamically by the user through software register. Counter data is given as the input to the
block (This is used for checking the functionality of the block). The basic functionality can be
checked by simulating the design and checking the input as well as output data on the scope.The
input data and the delayed output data can be stored in a BRAM using a snap block. This BRAM is
read via python script to check the functionality of the block on actual hardware.

In the present case you will design a delay block with 4 simultaneous input port. The delay block will
be designed to compensate maximum of 2048 clock cycles and this value is externally provided by
you at the time of testing. As the simulataneous inputs are four, hence 4-BRAMs with 512 (i.e.
2048/4) locations are required to store the data. The internal logic is designed in such a way that the

Page 3 of 22

delays greater than 4 clock cycles are addressed by certain logic and delays less than 4 clock cycles
are acheived via barrel shifter. A sync is provided to synchronize the delay block with rest of the
logic in the design.

5.1 Create a new model:

Start Matlab and open Simulink (either by typing simulink on the Matlab command line, or by clicking
the Simulink icon in the taskbar). Create a new model file.

Add all the blocks from Simulink library browser and arrange them as shown in the
figure below:

Page 4 of 22

5.2 Add Xilinx System Generator and XSG Core Config blocks :

By now you should have used these blocks a number of times. Add System
Generator block from Xilinx Blockset -> Basic Elements -> System Generator libray
path. The settings can be left on default.

Also add XSG core config from BEE_XPS System Blockset -> XSG core config. Set
its “Hardware Platform” to ROACH sx95t with “User IP Clock Source” as sys_clk
which is an onboard 100MHz crystal. This block will configure the System
Generator block which you have added previously. All hardware related blocks are
yellow and can be found in the BEE_XPS library.

 You need to add these two blocks for all the CASPER designs.

5.3 Inputs to the coarse delay block :

The inputs required to the coarse delay block are
a) simulataneous n input data_in.
b) a sync : for synchornisation of the coarse delay block with rest of the design
c) a delay : for the amount of delay to be compensated
d) an enable : for latching the delay value provided dynamically by the user at the sync boundary
only.

Page 5 of 22

5.3.1 Add the software registers

Add two software registers from BEE_XPS System Blockset -> Software Register. Set the I/O
direction to “From Processor”. Rename those software registers as sync and delay.

Sync pulse will ensure the proper syncronization of the coarse delay block with rest of the logic in
the design.

Delay is used to provide the delay values from the processor dynamically to the block.

5.3.2 Add blocks for simulation

Add Pulse Generator from Simulink->Sources->Pulse Generator. Set Pulse type to “Sample
based” , Period as “100” , Pulse Width as “1”. This is used for simulation. It simulates a sync pulse
with a period of 100 clock cycle and pulse width of 1 clock cycle.

Add Constant from Simulink->Sources->Constant. Set Constant value to “2”. This is used for
simulation. It will delay the input data stream by 2 clock cycles.

5.3.3 Add slice blocks

Add two slice blocks from Xilinx Blockset-> Basic Elements->Slice. Rename them as Slice1 and
Slice2. Set properties of Slice1 to “Boolean Output”, as the data type of Sync input is boolean. Set
the properties of Slice2 as shown in the figure below :

The maximum delay that can be compensated is 2048 i.e. 2^11 hence the bitwidth of the slice is set
to 11.

Page 6 of 22

5.3.4 Add Counters

Add four Counter blocks from Xilinx Blockset-> Basic Elements->Counter. Rename them as
Counter1, Counter2, Counter3, Counter4. Set the properties of Counter1 as shown in the figure
below:

Set all the properties for rest of the counters similar to that of Counter1 except for “Initial value” . Set
2, 3 and 4 as the “Initial Value” for Counter2, Counter3 and Counter4 respectively.

Page 7 of 22

5.4 Latch the delay value :

Add a register from Xilinx Blockset-> Basic Elements->Register and rename it to delay_reg. Select
Provide enable port.

This register is used to latch the delay only when enable (which is connected to sync pulse) goes
from low to high.

5.5 Logic for delay compensation greater than 4 clock cycles :

5.5.1 Add slice blocks

Add two slice blocks from Xilinx Blockset-> Basic Elements->Slice. Rename them to
bram_rd_addrs and bs_sel and set the properties as shown in the figure below:

Page 8 of 22

As the data is coming in four parallel stream, 4 BRAMs are required to store the data. The upper
MSBs of delay(software register) sliced by bram_rd_addrs is used as the address of the BRAM for
data read out. The lower bits of delay (software register) sliced by shift_sel is used as the select
input for the barrel shifter.

5.5.2 Add constant block

Add three constant blocks from Xilinx Blockset-> Basic Elements->Constant. Rename them to
Constant1, Constant2 and Constant3. Set Type to “Unsigned” and Number of bits to “2” for all of
them. Set Constant value to “2” for Constant1, Constant value to “1” for Constant2 and Constant
value to “0” for Constant3.

5.5.3 Add relational operator

 Add three relational block from Xilinx Blockset-> Basic Elements->Relational. Set Comparison to
“a>b” for all the blocks.

5.5.4 Add convert block

Add three convert blocks from Xilinx Blockset-> Basic Elements->Converter. Set Type to
“Unsigned”, Number of bits to “1” for all the blocks.

Page 9 of 22

5.5.5 Add Adder block

Add three adder block from Xilinx Blockset->Math->AddSub. Go to Output Type tab of the block.
Select Precision to “Full”.

5.6 Create a subsytem for storing input data stream :

Storing of the data in memory can be implemented using single port RAM or dual port RAM.
Depending upon the need the user can select the type of RAM available.

5.6.1 DUAL PORT RAM

5.6.1.1 Add Counter
Add counter block from Xilinx Blockset-> Basic Elements->Counter. Rename it to wr_addr.
Set Counter type to “Free running”, Count Direction to “Up”, Initial Vaule to “0”, Step to “1”,
Output Type to “Unsigned”, Number of bits to “9”, Binary point to “0”. This counter is used to
generate the address for writing the data into dual port RAM of 512 i.e. 2^9 locations.

5.6.1.2 Add substractor block
Add a substractor block from Xilinx Blockset->Math->AddSub. Go to Basic Tab , set
Operation to “Subtraction”. Goto Output Type tab set Precision to “User Defined”, Output
Type to “Unsigned”, Number of bits to “9”, binary point to “0”. It basically generates the read
 address from the write address offseting it by delay value.

5.6.1.3 Add delay and constant blocks
Add a delay block from Xilinx Blockset-> Basic Elements->Delay. Set the Latency
to “1”.

Add two constant blocks from Xilinx Blockset-> Basic Elements->Constant. Rename it to
Constant1 and set Type to “Boolean”, Constant value to “1”. This block is used to keep the
write enable of port A always high for the dual port RAM. Rename the another block to
Constant2 and set Type to “Boolean”, Constant value to “0”. This block is used to keep port
B always high i.e. port B will be configured as the reading port of dual port RAM.

5.6.1.4 Add Dual port RAM
Add a Dual Port RAM from Xilinx Blockset->Memory->Dual Port RAM. Goto Basic tab and
set Depth to “512”, Memory Type to “Block RAM”, Latency to “3”. This is used for storing
the input data stream.

Page 10 of 22

5.6.2 SINGLE PORT RAM

5.6.2.2 Add a Constant block
Add a constant block from Xilinx Blockset-> Basic Elements-> Constant. Set Type to
“Unsigned”, Constant value to “4” and Number of bits to “11”.

5.6.2.3 Add substractor block
Add a substractor block from Xilinx Blockset->Math->AddSub. Go to Basic Tab , set
Operation to “Subtraction”. Goto Output Type tab set Precision to “User Defined”, Output
Type to “Unsigned”, Number of bits to “9”, binary point to “0”.

5.6.2.4 Add Relational block
Add relational block from Xilinx Blockset-> Basic Elements-> Relational.Set Comparison
to “a>=b”.

All the above logic is used to generate the read and write address for the RAM.

5.6.2.5 Add a constant block
Add a constant block from Xilinx Blockset-> Basic Elements-> Constant. Set Type to
“Boolean” and constant value to “1”. This indicates that the data is written into RAM at every
clock cycle.

5.6.2.6 Add Single Port RAM
Add a single port RAM from Xilinx Blockset->Memory->Single Port RAM. Set Depth to
512, Memory Type to “Block RAM”, Write Mode to “Read before write” and latency to “3”.

5.7 Logic for delay compensation less than 4 clock cycles :

 Add Barrel Shifter block

Add a barrel shifter block from CASPER DSP Blockset -> Reorders-> barrel_switcher. Set the
Number of inputs to “2”. Barrel shifter basically shifts the data by a specified number in one clock
cycle. This is used to acheive the delay compensation less than 4 clock cycles.

Page 11 of 22

5.8 Add a delay block :

Add a delay block from Xilinx Blockset-> Basic Elements->Delay and rename it to sync_delay. Set
its latency to “4”. This is used to delay the sync pulse in order to match with the pipeline latency
encounter by the data within the block.

5.9 Outputs from the coarse delay block :

The outputs from the coarse delay block are sync_out and simultaneous n number of data_out.

5.10 Add signal routing blocks :

5.10.1 Add goto blocks

Add 10 signal routing goto block from Simulink->Signal Routing-> GoTo. Rename them to
sync_in,data_in1,data_in2,data_in3,data_in4,sync_out,data_out1,data_out2,data_out3,data_out4.
These are used for signal routing.

Page 12 of 22

5.10.2 Add from blocks

Add 10 signal routing From blocks from Simulink->Signal Routing-> From. Rename them to
sync_in,data_in1,data_in2,data_in3,data_in4,sync_out,data_out1,data_out2,data_out3,data_out4.
These are used for signal routing.

5.11 Add blocks for simulation:

5.11.1 Add scope

Once all the blocks are dded you need to check the functionality of design. This done by simulating
the design. The simulated output from the design can be viewd using a scope. Add Scope1 from
Simulink->Sinks->Scope.

5.11.2 Add delay blocks

Add 5 delay blocks from Xilinx Blockset-> Basic Elements->Delay. Set the latency of the four blocks
to 7 and connect them to data_in signal routing blocks. Set the latency of the fifth delay block to 6
and connect it to sync_in signal routing block.

5.11.3 Add gatewayout blocks

Add 10 gatewayout blocks from Xilinx Blockset -> Basic Elements -> Gateway Out. Uncheck the
“Translate into output port”.

5.12 Add blocks to check the behaviour of the coarse delay block on the hardware :

Page 13 of 22

5.12.1 Add snap block

Add snap block from CASPER DSP Blockset -> Scopes ->snap64. Snap block is used to capture
the data from the FPGA and make it accessible to the user. The block stores the 64 bit data when
the ctrl signal goes from low to high. Hence this block is used to check the behaviour of the delay
block on actual hardware.

5.12.2 Add delay blocks

Add 4 delay blocks from Xilinx Blockset-> Basic Elements->Delay. Set the latency to 7 and
connect them to data_in signal routing blocks. These are used to match with the pipeline latency
encounter by the data stream in the block.

5.12.3 Add a concat block

Add a concat block from Xilinx Blockset-> Basic Elements-> Concat. Set number of inputs to 8. This
is used to give four 8-bit data_in and four 8-bit data_out concatenated together and give it to the
snap blocks datain input port.

5.12.4 Add a constant block

Add a constant block from Xilinx Blockset-> Basic Elements-> Constant. Set Type to “Boolean” and
Constant value to “1”.

6 Simulation
Once the basic design has been created the next step is to simulate it for checking the functionality
of the coarse delay block. Simulation results shows whether the output is as expected or not. If not
suitable corrections can be made before moving for the next step.

6.1 Add blocks to check the behaviour of the coarse delay block on the hardware :

Goto Simulation->Configuration paramters. Set the stop time to 20. This will give simulated output
for 20 time stamps.

Page 14 of 22

6.2

Run Simulation

Goto Simulation->Start. This will simulate the design for 20 timestamps. And the results can be
viewd in the Scope 1.

6.3 Simulation result

The simulation result shows that the data_in is delayed by 2 clock cycles. Hence data_in1 i.e port1
(connected to 3rd Axes labled as Data_in1) is available at the output port3 (which is connected to the
7th Axes labled as Data_out3) hence showing that the input is delayed by 2 clock cycles.

Page 15 of 22

Page 16 of 22

7 Testing of the block on ROACH

7.1 Compilation of the design

Compile the design to test it on the hardware. Goto matlab command window and run the
command bee_xps. It will open the following window

Make sure the file displayed in the pop-up is correct and then click the <i>Run XPS</i> button. After
compilation, it creates a directory named after the model file name without the .mdl extension. There
is a sub directory named bit_files. In this bit_files directory there are .bit and .bof file. We need the
.bof file to program the FPGA.

You need to copy this .bof file at location [FPGA_PROG_BOF_DIR] after changing the permissions
of the file.

eg. for the bof file [TUT7_BOF_FILE] in the area [STD_BOF_DIR]

$ chmod a+x [STD_BOF_DIR]/[TUT7_BOF_FILE]

$ cp [STD_BOF_DIR]/[TUT7_BOF_FILE] [FPGA_PROG_BOF_DIR]

7.2 Data aquisition

A script is written in python to communicate witht the ROACH board.This script programs the board,
sets the delay from command line and plots the input and delayed output data stream from the
BRAM. Run the python script file “[TUT7_PYSCRIPT_FILE]” saved in the following location :
“[STD_PYSCRIPT_DIR]”

Usage : [STD_PYSCRIPT_DIR]/[TUT7_PYSCRIPT_FILE] roach_name -b [bof_file] -d <delay in
number of clock cycles>

Enter the corresponding Location/File names and roach name/IP. This will program the Roach board
with the above BORPH file as well as set the delay of 5 clock cycles.

Page 17 of 22

For eg.

$ [STD_PYSCRIPT_DIR]/[TUT7_PYSCRIPT_FILE] roach030172 -b
[tut7_coarse_delay_blk_2011_Sep_26_1250.bof] -d 5

7.3 Plots

The plot shows the data_in and data_out. Hence there are four Axes representing 4 simultaneous
data streams. The first axis shows the zoomed data points of data_in1 and data_out1. The Red Dot
is for data_in1 and the Blue Plus sign is for data_out1. The difference between the data in and data
out is exactly the same as provided i.e of 5 clock cycle.

Page 18 of 22

8 Writing a MATLAB script

After the functionality has been checked and verified now you can write a matlab script for the
block.

8.1 Masking the block

8.1.1 Create Subsystem

Select all the blocks connected between input and output ports of the coarse delay block as shown
in the figure below. Right clcik and select “Create Subsystem”. Rename the block as
<your_initials>_coarse_delay_wideband_prog.

8.1.2 Rename the I/O ports

Rename the input ports as sync, delay, en, data_in1, data_in2, data_in3 and data_in4. Similarly
rename the output ports as sync_out, data_out1,data_out2, data_out3 and data_out4.

Page 19 of 22

8.1.3 Add Paramters

Right click and select “Edit mask”. Following window will open. Go to Parameters tab and add
various parameters and corresponding paramter value to it as shown in the figure below:

8.1.4 Function Call

Go to initialization tab and from the initialization commands call the matlab function. The function
name should be <block_name>_init in our case it will be
<your_initials>_coarse_delay_wideband_prog_init.
Pass the mask parameters and parameter value to the initialisation function in ('parameter_name' ,
parameter_value) pairs where 'parameter_name' is a text string containing the name of the
paramter and parameter_value is the associated value as shown in the figure below:

8.1.5 Mask Parameters

Go to documentation tab and write the block name i.e.
<your_intials>_coarse_delay_wideband_prog in the Mask Type section.

Page 20 of 22

The above steps will pop-up a window when the user double-clicks the block as shown in the figure
below:

8.2 Adding the block to the library

Add this coarse delay block to the CASPER DSP Blockset -> Delays library. First Open the library
then gotoSimulink library browser Edit-> Unlock Library. Now paste the block in that library.

8.3 Write the script

Refer to the delay_wideband_prog.m file at the location “[CASPER_LIB_DIR]”.

Step 1 : The file name should be <block_name>_init.m i.e.
<your_initials>_coarse_delay_wideband_prog_init.m and save it to the “[CASPER_LIB_DIR]”.The
initialization function should be <your_name>_<block_name>_init.

Step 2 : Write the Comments describing the purpose of the function and how to use it.

Step 3 : Follwoing are the various functions used to write the script for the block
“same_state” : It checks whether the parameters are changed or not. If they are changed then only it
will redraw otherwise it will exit.

“check_mask_type” : This is a sanity check . This is used to check that the initialisation script is
being called to operate on the appropriate block. This name is mentioed under the Documentation
tab in Mask editor for the block.

“munge_block” : The call to this function causes link to the original library block to be disabled if the
block is not to be instantiated in a library. This causes changes to local and not to propagate to the
library.

“get_var” : This is used to extract the various parameter values passed to the function.

Page 21 of 22

“delete_lines” : It removes all the connections in the existing system.

“reuse_block” : This searches for an existing block of the same type and sets the necessary
paramters. Use get_param(gcb,'ObjectParameters') and get_param(gcb,ParamterName) function to
get all the necessary paramters of the block. get_param(gcb,'ObjectParameters') function will give
name of all the parameter where “gcb” gets the current active block. get_param(gcb,ParamterName)
function will return the value corresponding to the ParameterName.

“add_line” : This connects the output ports of one block to the input port of another block.

“clean_blocks” : A call to clean_blocks after all the blocks are instantiated and connected, ensures
unconnected blocks are removed.

“save_state” : Each Simulink block has a parameter called “UserData” for storage of data by the
useful. The call to save_state causes a data structure to be saved to this parameter. This structure
consists of two fields viz state and parameter. State contains a hash of the input arguments (used by
the same_state to determine if these have changed). Parameters contains a data structure with all
the mask parameters passed to the initialisation function. save_state also update the mask
paramters and overwrites variable references with actual values. This forces mask values to change
to values passed into the script. If mask values do not change, Simulink does not execute the
initialisation script so this also forces a change in mask values as variables are expanded so that
future change in these variables cause execution of the initialisation script.

Note : For more detail description on script writing visit following link
https://casper.berkeley.edu/wiki/DSP_Block_Standardisation

8.4 Checking for the syntactical/logical error if any in the script

Call the function from the Matlab Command Window. It will list the error if any in the command
window. This helps in debugging the script before actually using it with the block.

For eg. Execute the function from matlab command window
delay_wideband_prog_init(gcb,'max_delay',1024,'n_inputs_bits',3,'bram_latency',4,'bram_type','Dual
Port')

8.5 Use the block from the library

Pick and place the block from the library to the new model file. Now change few paramters of it. It
will give a call to the initialisation script and redraw the block according to the input parameters. You
can see that the internal structure of the block changes with the change in input parameter.

9 Conclusion
You have completed the tutorial on designing of the green block. You can now design any block
whose internal structure varies dynamically depending upon the masking paramters.

Page 22 of 22

https://casper.berkeley.edu/wiki/DSP_Block_Standardisation

	1 The Hardware and software required for this tutorial.
	2 Introduction
	3 Background
	4 Setup
	5 Creating Your Design
	5.1 Create a new model:
	5.2 Add Xilinx System Generator and XSG Core Config blocks :
	5.3 Inputs to the coarse delay block :
	5.3.1 Add the software registers
	5.3.2 Add blocks for simulation
	5.3.3 Add slice blocks
	5.3.4 Add Counters

	5.4 Latch the delay value :
	5.5 Logic for delay compensation greater than 4 clock cycles :
	5.5.1 Add slice blocks
	5.5.2 Add constant block
	5.5.3 Add relational operator
	
	5.5.4 Add convert block	
	5.5.5 Add Adder block

	5.6 Create a subsytem for storing input data stream :
	5.6.1 DUAL PORT RAM
	5.6.2 SINGLE PORT RAM

	5.7 Logic for delay compensation less than 4 clock cycles :
	 Add Barrel Shifter block

	5.8 Add a delay block :
	5.9 Outputs from the coarse delay block :
	5.10 Add signal routing blocks :
	5.10.1 Add goto blocks
	5.10.2 Add from blocks

	5.11 Add blocks for simulation:
	5.11.1 Add scope
	5.11.2 Add delay blocks
	5.11.3 Add gatewayout blocks

	5.12 Add blocks to check the behaviour of the coarse delay block on the hardware :
	5.12.1 Add snap block
	5.12.2 Add delay blocks
	5.12.3 Add a concat block
	5.12.4 Add a constant block

	6 Simulation
	6.1 Add blocks to check the behaviour of the coarse delay block on the hardware :
	6.2 Run Simulation
	6.3 Simulation result

	7 Testing of the block on ROACH
	7.1 Compilation of the design
	7.2 Data aquisition
	7.3 Plots

	8 Writing a MATLAB script
	After the functionality has been checked and verified now you can write a matlab script for the block.
	8.1 Masking the block
	8.1.1 Create Subsystem
	8.1.2 Rename the I/O ports
	8.1.3 Add Paramters
	8.1.4 Function Call
	8.1.5 Mask Parameters

	8.2 Adding the block to the library
	8.3 Write the script
	8.4 Checking for the syntactical/logical error if any in the script
	8.5 Use the block from the library

	9 Conclusion

