Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

(AS P E R Home Group Documentation Mail Archive About

COLLABORATION FOR ASTRONOMY SIGNAL PROCESSING AND ELECTRONICS RESEARCH

Tutorial - Noise Source

From Casper

ump to: navigation, search

CASPER

Tutorial 6: Study and Implementation of Digital Noise Source
Author: Kaushal Buch (Version 1)

Expected completion time: 2 hours

Contents

[hide]

e 1 Hardware and software used for this tutorial
e 2 Introduction
e 3 Setup
e 4 Design of Digital Noise Source
e 5 Creating . FSR Design
o 5.1 Create a New Model
o 5.2 Adding a reqgister
o 5.3 Duplicate the reqgisters and add Assert Block
o 5.4 Duplicate the 'Assert' blocks for all the 18 reqgisters
o 5.5 Add reset and input signals
o 5.6 Add outputs
o 5.7 Leap Forward Logic
o 5.8 Creating subsystem for LFSR
o0 5.9 Preparing the LFSR block for compilation
0 5.10 Converting the LESR block into a subsystem
e 6 Adding software reqisters & snap block
e 7 Compiling the design
e 8 Running the design
e 9 Adding more LFSR blocks to the design
e 10 Towards Gaussian Qutput
e 11 Conclusion

Hardware and software used for this tutorial

Hardware/Software Description ‘

Dell Intel(R) Core(TM) i3
CPU 530 @ 2.93GHz width

PC

10of18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

| |64 bit & 4GB RAM
Linux 2.6.35-30-generic

oS #54-Ubuntu 10.10 SMP
x86_64 GNU/Linux

|Matlab [2008a

|Xilinx |ISE version 11.5

|CASPER lib |gits 100511

|Python |version 2.6

|corr package |corr-0.6.5

minicom version 2.4 (compiled on Jun

32010)

version 1.0 Rev 3 2009,
uboot : uboot-2010-07-15-

ROACH unit r3231-dram, Linux Kernel
Image : ulmage-jiffy-
20091110
[]
Introduction

In this tutorial, you will study the concept of the digital noise source and implement it using the Simulink-
System Generator based tool-flow & CASPER library. You will download the BORPH (.bof) executable file
on ROACH and will view the noise histogram on a P.C. by running a python script.

Setup

The lab at the workshop is preconfigured with the CASPER libraries, Matlab and Xilinx tools. Please refer
the file LOCATIONSandFILES in the home/Desktop area or LOCATIONSandFILES slides displayed, for the
locations/directories and files information required in the tutorial.

Note: The Date and Time portion of the BOF file name will be different! It depends upon when (Date &
Time) you complile your model file !

Note: All the following cable connections and entries in the /etc/* files of the workshop PCs have already
been done. You are not required to do any of the following setup and they are informatory in nature. You
can verify points 1 to 4 on the setup you are working on and if you have any doubts regarding them kindly
contact the lab instructor. Kindly go through point 4 to decide the way you will implement the tutorial.

1. Connect the Serial port cable between the ROACH board's P2 connector and serial port of the PC (on
which minicom program exists).

2. Connect the Ethernet cable to J25 port of the ROACH board from the PCs eth1 port. /etc/ethers file
should have mac address and corresponding IP address. In the /etc/network/interfaces file , eth1 should be
configured. And in the file /etc/hosts , IP address and corresponding roach board (host) name entry to be
done.

3. seed value.m file must be kept in the directory [MATLAB START DIR].

4. Create your own directory at “[USER DIR]” , where you can save and compile your model file or save any
work that you may do. There are three ways to implement this tutorial.

A)You can either copy the mdl file “[TUT6_MDL FILE]” from the the area “[STD MDL DIR]” to the
directory that you have created at “[USER DIR]” and compile it in the MSSGE (Matlab-Simulink-System
Generator) environment

20f 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

3o0f18

OR

B)You can use the bof file kept in the area “[FPGA PROG BOF DIRJ/[TUT6 BOF FILE]” to directly program
(using the python script explained in “Running the design”) the FPGA and look at the results

OR

C)Follow the steps given below to create the mdl file similar to the file
“[STD_MDL DIRJ/[TUT6_MDL FILE]”.

5. Start the matlab :
$cd [MATLAB START DIR]

[MATLAB START DIR]$./[MATLAB START FILE]

Design of Digital Noise Source

Noise sources are required for the testing of hardware in absence of an actual input or in general to
emulate the behaviour of noise. During the development of digital receiver design for radio telescopes,
noise source is required for testing or, one has to check it, taking the output from the antenna (i.e. the
actual operational receiver chain). The aim of this tutorial is to study and implement a digital noise source
using the CASPER tool flow. A digital noise source can be implemented as a part of the receiver hardware
which can be used to provide noise stimulus for verifying the digital design (correlator) on FPGA.

Various methods exist for generating Gaussian random numbers on hardware. We would be considering
the use of Central Limit Theorem to generate Gaussian random numbers (noise) from random numbers
with uniform probability distribution. The hardware requirement is relatively lesser for this approach and
also it does not use any FPGA specific hardware like BRAM, multipliers etc.

Central Limit Theorem (CLT) states that when finite variance random variables having different phases are
combined, it leads to random variable possessing a Gaussian distribution.

Uniform random number can be generated digitally using a Linear Feedback Shift Register. A maximal
length LFSR can generate uniform random variables with a periodicity of 2" - 1, where n is the order of the
polynomial. An example of 2+ 41 polynomial using LFSR is shown in the figure below -

FEEDBACK PATH —7_
|
\

SHIFT REGISTER

SET] SET] SET] [SET]
LD @D ¥ oD “ Q|0 ¥ @} it

1 > 2 > 3 > 4

CLR Q CLR Q CLR Q CLR Q

CLOCK

POLYNOMIAL : x* + x* + 1

The polynomial has to be chosen from the set of maximal length sequences, similar to ones used for
generation of PN sequences in CDMA transmitter. Irreducible polynomials of degree L generate sequences

whose periods must be divisors of qL - 1. Those special irreducible polynomials, which are the
characteristic polynomials of m-sequences, are called primitive polynomials, and they exist for every degree
over every finite field.

Wednesday 05 October 2011 12:04 PM

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

A variant of the normal serial output LFSR known as the Leap Forward LFSR is used. The leap forward
LFSR would generate a parallel output, by ‘looking-ahead’ number of bits required by the output vector. In

our case, 14 LFSRs each having a periodicity of 2181 values, each of 4-bit are chosen for implementation.

Creating LFSR Design

Create a New Model

Start Matlab and open Simulink (either by typing simulink on the Matlab command line, or by click in the
Simulink icon in the taskbar). Open a new .mdl file and start the design with an LFSR.

Adding a register

Add a register from the library. Double click the register and select the synchronous reset port option. In
the field of initial value put s1.

\' Registerl8 (Xilinx Register) L)

Basic | Advanced @ Implementation

Initial value | s1

Optional Ports

v Provide synchronous reset port

Provide enable port

OK Cancel Help Apply

K
z qp
rst

Reqister18

Duplicate the registers and add Assert Block

As we are designing for an 18-bit polynomial, we would require 18 registers. Duplicate all the registers
from the first one, double click and add the Initial value from s2 to s18 respectively in all the registers.

The LFSR structure needs a feedback and Simulink requires an assert block when the output is fed back to
the input. Connect the 'Assert' block at the output of the register and double click and set the output data
type to unsigned Boolean.

4] Pl
’ ' (o

" rst
[reset)) Assert18 Goto2
- Register|

From

Duplicate the 'Assert’ blocks for all the 18 registers

Click the block and drag it along with the ‘Ctrl’ key.

4 of 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

50f18

.

From1

ne

From3

From22 reset]

o
From23 rst

d
2!

rst

legister|
d

Reqister2

d
23

rst

Reaister1

d
2!

rst

FReaister3

rst

Reqisterd

ReqisterS

rst

Recister®

af>hep

Assert18

z
ot [Phab

Assertl

Add reset and input signals

Provide a common reset signal to all the registers

d .
fst Assert18
From Register18
d 4
vt o
N Assert!
From1 Register2
d .
[reset] rst Assert?
From2 Register1
d .
[Aszsert3
From3 FRedgister3
dz"
Registers Assertd
From4 egister
elz_|
N Asserts
FromS RegisterS
d 4
[Aszserté
From6 Registert
elz_|
N Assert?
From7 Register7

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

Provide inputs starting from g4 to g17 (above) and remaining from a0 to a3 (as shown below).

Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

6 of 18

oncs

From11

b=

From10
d

From2S rsl 11’@
Assert?

Register7

e

Reggster]

. >l e
From27 m Assertd

Register9

lw)——F 51

-1

z

From28 m 9
Assert10

leqgister |
P g 2

Assertl]
Register11

d
21

L Assert12

From30

om12 Register12

Fr

d
21

rst

From31

Assert13

From14

From13 Regster13

[oo)——f s
z gl
From32 |[reset) rst Assert14

Register14

CI
Z0 gt—phsd

et Assert1S

From34

From1S Register 1

S o 2T

Assert16

From16

ke

rst

From35

Assert17

From17 Regrster17

Add outputs

Connect the outputs of the register coming via the assert block starting from q0 to q17.

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

7 of 18

T
;

d
From19 m

d
From20 rst
z
From21 rst

[oo)——f
2 q
From22 rat

(o) ——f
g
From23 m

From24 rst

[wa)y———f 5
Zq
From2s m

Register2

Register1

d

Register3

Registerd

RegisterS

Registert

rst |

Register7

Register10

Assert18

Assert]

Assert2

Assert3

Assertd

AssertS

Assertd

2

Assert?

Assertd

Assertl]

Assert10

g
R

o
e
=

;

g

;

g

:

g
&

g
8

;

g

[

g
&

|
;

g
g

|
;

g
S
=)

;

o
2
-4

. From1S

[ws)———F
From23 rst

:

From30

rst S

From12 Register12

From31

From13 Register13

:
From32 mz' q

From14

o

Register14

4

rst

From33

From16
[)——%,

feqister]

z3
rst

d 1

From3s

rst

From17 Reaister17

-y
B

::-' S

Leap Forward Logic

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

For leap forwarding to get parallel outputs from the LFSR, we need to add XORing logic. Add an Expression
block from the Xilinx library and double click to change the expression to a ™ b. Keep the output type to

Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

“Full”.

) Expression (Xilinx Bitwise Expression Evaluat = O X
Basic Output Type Advanced Implementation
Expression|a ~ b)

« Akgn binary point

frowide enable port

Latency 0

oK Gancel Help Apply

Expression

Using the expression blocks, create a structure for the LSB of the output as shown in the figure below.

i
;

8
iF

corn 228

Assert19 Goto19

=
4
<
&

g
g
i

repeat it for all the other outputs as shown in figure below.

i) | 8 |3
& |
=
<

K2l Expression arb
b
Fromd1 Assert20 Gota20
[)—F
a‘b
- b
m Expressiond
Fromd3
[)—F
a‘b
Fromd4 b
3] Expressiont A
arb "
Fromds b Mlzl
la Expression8 Golo2t
aib
From46 b
@ Expression?
Fromd?

5
T&
-
-

>
o

From48 b
A
o= 5
b
Fromd9d f Aosertz2 Goto22
[re)—F
a‘b
FromS0 b
m Expression10
FromS1

Concatenate the bits to get 4-bit output and also provide an input port for reset.

8 0f 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

90f 18

Creating subsystem for LFSR

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

Create a subsystem for this LFSR block (by selecting the entire logic and using right click to 'Create
Subsystem'.

reset

ouh

Ifsr_1

Once the subsystem is created, right click on the block and go to 'Edit Mask'. On clicking it, a window will

open. Click on the first tab on the left column to add a new field in the table. Go to the 'Parameters' tab and
add 'Seed' in the 'Prompt' field of the parameters. The variable would be set to 'seed' and Type to 'edit' and
tick the 'Evaluate' and 'Tunable' field.

outt

£

Ifsr_1

X

o 1 X

Mask Editor : Ifsr_1

Icon Parameters | Initialization | Documentation

Dialog parameters

Prompt Variable

Seed seed

Options for selected parameter
Popups (one per line): In dialog

Dialog
callback:

Unmask |

edit

Type

-

Cancel |

Evaluate | Tunable |

v

Help |

v

Apply

x|

Now go to the initialization tab in the same window. In the field Dialog Variables, put 'seed' and in

Initialization commands, paste the following line -

[s1s2s3 s4s55s657s8s9s10s11s12s13s145s15516s17s18] = seed value(seed);

Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

L Mask Editor : Ifsr_1 “ex

| S— Ion | Parameters * Initiaization | Docy

Dialog variables

(51 52 53 34 35 96 57 38 59 310 511 512 503 514 515 516 517 318) = seed_value (seed)

Unmask o] camer Help 200l

Steps mentioned above provide the seed value to the LFSR. This would be passed through a Matlab
function, the file containing this Matlab function (seed value.m).

We have one noise source ready. In order to check the probability distribution of this source, we will first

have to pass a seed from the top level subsystem and also we will need to store the data into a memory in
order to be read through a PC and analyzed.

Preparing the LFSR block for compilation

To begin, create a subsystem that contains the LFSR block. As explained earlier, right click the subsystem
and go to 'Edit Mask'. Add new field and add the details as shown in figure below -

2 Mask Editor : Nolse Source - 1

et ot Icon " Parameters | Initialization | Documentation

Dialog parameters

Noise Source - 1

Yy

Prompt Variable Type Evaluate | Tunable I
Seed 1 seedl edit hd v v

“ (X

Options for selected parameter

Popups (one per line): In dialog: (v| Show parameter v Enable parameter

Dialog
callback.

Unmask OK Cancel || Help Apply

The purpose of this tutorial is to develop the random number generator and also to understand the Central
Limit Theorem, the concept behind generation of Gaussian distribution from uniform distribution. In order
to view the distribution, we will need to add additional blocks so that the data from the random number
generator can be stored in a memory and read to the P.C. using a script.

Converting the LFSR block into a subsystem

10 of 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

11 of 18

reset

O et outt ——»{(1)

Outt

Ifsr_1

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

Repeat step 4.9 every time you add a new LFSR to the subsystem. Once the mask is edited add the value
'33072' to the field. This is the random seed which will get converted to an 18-bit binary number and will

be provided as an initial value to each of the 18 registers.

Adding software registers & snap block

Now, we need to provide reset to the circuit using software register, so add a software register, followed
by a bit slice so that the LSB is provided to the reset. Please name the register 'reset'. You may add a Pulse
Generator to the sim_in input of the software register. To store the generated random number samples,
add a snap block from the CASPER library. This block will need trigger and write enable inputs. Provide
write enable as a constant boolean input using a 'Constant’ block. Trigger input can be provide similar to
the reset but by adding a register (name it 'trig') followed by a rising-edge detector block. Also add the

ROACH XSG Core Config and System Generator tokens.

reset

reset

ot

Register!

Compiling the design

By giving bee xps command in the matlab window we will get a pop-up. Make sure the file displayed in the
pop-up is correct and then press RUN to start the compilation. After compilation , it creates a directory
named after the model file name except .mdl and another sub directy as bit _files. In this bit_files directory
there are .bit and .bof file. We need the .bof file to program the FPGA. You need to copy this .bof file at
location [FPGA PROG BOF_ DIR] after changing the permissions of the file.

eg. for the bof file [TUT6_BOF FILE]in the area [STD BOF DIR]

$ chmod a+x [STD_BOF _DIRJ/[TUT6 BOF _FILE]

$ cp [STD BOF DIRJ/[TUT6 BOF FILE] [FPGA PROG BOF DIR]

Running the design

The python scripts are located in the “[STD_PYSCRIPT DIR]” directory. We first need to run

Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

“[TUT6_PYSCRIPT FILE]” to program the FPGA and plot the result.
Usage : [STD_PYSCRIPT DIR)/[TUT6 PYSCRIPT FILE] <ROACH name/IP> -b <bof file>

egd.

$ [STD _PYSCRIPT DIRJ/[TUT6 PYSCRIPT FILE]roach030172 -b
[tut6_digital noise src 2011 Sep 23 1128.bof]

Enter the corresponding Location/File names and roach name/IP.

On the running above script, for a single noise source, a window showing the histogram of uniform
distribution would appear as shown in the figure below -

3500

1500

Y06

Adding more LFSR blocks to the design

We will need to add more LFSR blocks in the noise source and add them to make its distribution Gaussian.
Now, changes are only to be made in the noise source block. Other subsystem blocks and main design
would not need any change.

Within the noise source block, in order to get another LFSR block, use Ctrl + left click + drag the mouse.
This will generate an identical copy of the block.

Ifsr 2

Now we need to check the output with two noise sources added. Get the adder block from the library and
set the output type to 5-bit unsigned (since the two inputs are 4-bit unsigned).

12 of 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

> P! reset outt I

reset
R Outt
AddSuo

ifs 2

Also double click the block and change the seed value to seed2. Repeat step 4.9. In step 4.10, add '2871' as
the random seed.

Repeat step 6 and check the histogram output.

The output after adding two LFSRs (uniform number generators) should be as shown in the figure -

Towards Gaussian Output

Now in order to get Gaussian we will need to add 14 LFSRs. As mentioned earlier, instantiate the LFSRs
and change the seed values. Now make an adder tree, each adder having two inputs and remember that
the number of output at each stage would have one bit more than the number of input bits.

13 0f 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

14 of 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

150f 18

-0
CD

"2 addse

Addsub?

Addsubs

AddSube

Addsub14

Addsab11

Addsab12

Addsub13

Outt

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

Repeat steps 4.9 and add the values of random numbers as shown in the snapshot below -

Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper

16 of 18

Noise Source Seed Edror (mask) ~

Please enter the seed of the polynomials for the noise source.
Enter the seed as a row matrix of 15 and 0s. Please ensure to
have atleast one ‘1 in each matrix.

Parameters
Seed |
j33072]

Seed 2
2871

Seed 3
166157
Seed 4
140555

Seed S
54994
Seed 6
82858
Seed 7
46594
Seed 8
62263

Seed 9
104572

Seed 10
113743

Seed 11
17860

Seed 12
123293

Seed 13

117657
Seed 14

14480 v

I OK][Cancel][Help I Apy

105] b
Coistart AddSib

L] oult

mu_sel

Cadibil bl

Adder_Tree

Repeat step 6 and check the histogram output.

The histogram should appear as shown in the figure below -

https://casper.berkeley.edu/wiki/Tutorial - Noise ...

In order to make it zero mean subtract a constant 105 from the adder tree output as shown in figure below

Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

® 1)

Conclusion

This tutorial discussed the basics of digital noise source designed using combination of uniform random
number generators. It was shown how to implement a digital noise source using the CASPER tool-flow and
test it on ROACH board. The noise data was read from the FPGA to generate histogram to see the
distribution of noise and also to understand the Central Limit Theorem.

Retrieved from "https://casper.berkeley.edu/wiki/Tutorial - Noise Source"

Views

e Page

e Discussion
e View source
e Histo

Personal tools
e Login
reference

e Main Page
e Libraries
e Toolflow
e Hardware
e Software

documents
e Projects
e Tutorials
e Memos
e Papers
e Videos
e FAQ
wiki
e Recent changes
e Random page
e Hel

Search

Go Search

Toolbox

17 of 18 Wednesday 05 October 2011 12:04 PM

Tutorial - Noise Source - Casper https://casper.berkeley.edu/wiki/Tutorial - Noise ...

e What links here
e Related changes
e Special pages

e Printable version
e Permanent link

. Powered By
[£%] Modiawiki

e This page was last modified on 27 September 2011, at 14:50.
e This page has been accessed 272 times.

e Privacy polic

e About Casper

e Disclaimers

18 of 18 Wednesday 05 October 2011 12:04 PM

