-1-1¢

CASPER skaseumames NCRA < TIFR

CASPER Workshop
Tutorial 5: Wideband GPU | Zooming Spectrometer

Dev.By: Terry Filiba
Doc. By : Irappa M. Halagali gmrt/ncra/tifr
Expected completion time: 2hrs

Contents:

1. The Hardware and software required for this tutorial.
2. Introduction
3. Setup

PART ONE

Simulink design overview
Detailed blockumentation

Hardware configuration

N o o s

The python script “File5d”

PART TWO

8. cufft
9. The python script “File5e”

10. Conclusion

Page 1 of 16

1 The Hardware and software required for this tutorial.

1. PC : GPU PC/ Dell Intel(R) Core(TM) i3 CPU 530 @ 2.93GHz width 64 bit & 4GB RAM
2. 0OS : Linux 2.6.35-30-generic #54-Ubuntu 10.10 SMP x86_64 GNU/Linux

3. Matlab : 2008a

4. Xilinx : version 11.5

5. Casper : gits_100511

6. corrpack: corr-0.6.5

7. Python : version 2.6

8. minicom : version 2.4 (compiled on Jun 3 2010)

9. CUDA : release 4.0,V 0.2.1221

10. Nvidia GPU card : Tesla C2050 installed in the GPU PC.

11. ROACH unit with iADC card. : version 1.0 Rev 3 2009, uboot : uboot-2010-07-15-r3231-dram |,

Linux Kernel Image : ulmage-jiffy-20091110 and iADC : BEE2 DUAL 1 GHz ADC BOARD version 1.1

12. Signal generator to feed clock of 800MHz , 0dbm to ROACH unit through iADC's clk_i input.

13. Noise source to feed the input of -2.5dbm (500mv PkPk)@200 MHz BW (Total power over BW)
to the I+ input of iADC.

2 Introduction

In this tutorial we will record data from a 400MHz bandwidth, 1024 channel spectrometer on the
ROACH and further channelize that data in software using a GPU. For more information on
spectrometers please refer to Tutorial 3 which will walk you through a complete spectrometer
design.

The directory “Location3” contains the simulink model file and “Location4” precompiled bof file.
The “Location5” directory contains python scripts. Python script file “File5d” is used to initialize
the ROACH and record some data to the data directory. A “C” file, “File5g”, will open file containing
recorded data , fft it on the gpu , and copy it back to the data directory. Another python file “File5e”
is used to plot that result.

You should also have installed python, iPython, corr, aipy, numpy, pylab, and CUDA. As far as
hardware goes, you'll need:

a ROACH board.

an iIADC, which should be connected to ZDOKO on the ROACH.

a clock source, such as a signal generator, which should be connected to clk_i on the iADC.
a noise source to feed the input to I+ input on the IADC and

access to a computer with an Nvidia GPU and CUDA installed.

o s I s I s s |

Page 2 of 16

https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/uboot/uboot-2010-07-15-r3231-dram
https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/linux/uImage-jiffy-20091110

Setup

The lab at the workshop is preconfigured with the CASPER libraries, Matlab and Xilinx tools. Please
refer the file “LOCATIONSandFILES.pdf” in the home area or LOCATIONSandFILES slides
displayed , for the locations/directories and files information required in the tutorial. Note : The
Date and Time portion of the BOF file name will be different! It depends upon when (Date & Time)
you complile your model file !

Note : All the following cable connections and entries in the /etc/* files of the workshop PCs are
already done.

i} Connect the Serial port cable between the ROACH board's P2 connector and serial port of the
PC (on which minicom program exists).

Bl Connect the Ethernet cable to J25 port of the ROACH board from the PCs ethl port. /etc/ethers
file should have mac address and corresponding ip address. In the /etc/network/interfaces file ,
ethl should be configured. And in the file /etc/hosts , ip address and corresponding roach
board(host) name entry to be done.

Bl Feed the clock of 800MHz , 0 dbm to the clk_i input of the ADC card (which is plugged in the
ZDOK 0 connector near to mmc card/power supply) from the Signal generator.

B Connect the input signals to I+ iADC 0 (in the ZDOK 0 connector). The input signal should be of
-2.5dbm(500mv PkPk)@200 MHz BW(Total power over BW) at the iADC card input.

Bl Either copy the mdl file “File5a” from the the area “Location3” or follow the steps given below
to create the mdl file similar to the file “Location3/File5a” after creating your own directory at
“Location23” to save and compile your model file or the bof file “File5b” is kept in the area
“Location2” to directly program (using the python script explained in The python script “File5d”)
the FPGA and look at the results.

B! Start the matlab :

$ cd Locationl
Location1$./File0 &

Page 3 of 16

PART ONE

ROACH Channelizer

Page 4 of 16

Simulink Design Overview

The best way to understand fully is to follow the arrows, go through what each block is doing and
make sure you know why each step is done. To help you through, there's some “blockumentation” in
the appendix, which should (hopefully) answer all questions you may have. A brief rundown before
you get down :

The System Generator block

In the MSSGE block, the hardware type is set to 'ROACH:sx95t” and system is clocked at 200MHz
using adc0_clk

The sync generator which calculates the sync period based on the fft and accumulation parameters.
The accumulation length is set to 4096 since we will record 4096 samples at a time from a
single channel.

The signal comes in through the adc block which generates 4 samples on each clock

The samples from the adc are fed through the pfb_fir_real and fft_wideband_real.

The data out of the fft_wideband_real is fed into a mux allowing us to select an odd or even channel
based on the bottom bit of the channel_select register.

The channel_select register is also compared against the channel_counter to tell us when we have
data from the channel we want.

Two shared brams re_channel_bram and im_channel_bram are used to record 4096 samples
from a single channel.

Below the channel selection logic there are also some scopes. These will continuously record data
from the fft allowing us to plot the entire spectrum and ensure the roach is set up properly.

Without further ado, open up the model file and start clicking on things, referring the blockumentation as
you go.

Page 5 of 16

5 Detailed Blockumentation
ADC

http://casper.berkeley.edu/wiki/Adc

=] Function Block Parameters: adcd |

— ade [mazk)

The ADC block converts analog inputs to digital outputs. Every clock cycle, the inputs
are zampled and digitized to 8 bit binary paint numbers in the range of [-1, 1] and are
sim_in then output by the adc.

— Parameter:

ADC board

ADC clock rate [MHz)
Ja0n

[~ ADC interleave mode

sim_sync

outofrangeq
syncd Sample period

synci I‘]
sync

syncl

sim_data_valid

data_walid

sdcd
ak. I LCancel Help Apply

The first step to creating a frequency spectrum is to digitize the signal. This is done with an ADC — an Analogue to Digital
Converter. In Simulink, the ADC daughter board is represented by a yellow block. Work through the “iADC tutorial” if
you're not familiar with the iADC card.

The ADC block converts analog inputs to digital outputs. Every clock cycle, the inputs are sampled and digitized to 8 bit
binary point numbers in the range of [-1, 1] and are then output by the ADC.

The ADC has to be clocked to four times that of the FPGA clock. In this design the ADC is clocked to 800MHz, so the
ROACH will be clocked to 200MHZz*. This gives us a bandwidth of 400MHz, as Nyquist sampling requires two samples
(or more) each second.

This block was created by Pierre Yves Droz. Further documentation can be found online and is courtesy of Ben
Blackman.

INPUTS
sim_in Input for simulated data. It's useful to connect up a simulink source, such as
“pand-limited white noise” or a sine wave.
sim_sync Simulated sync pulse input. In this design, we've connected up a constant with
value '1'.
sim_data_valid Can be set to either 0 (not valid) or 1 (valid).
OUTPUTS

The ADC outputs two main signals: i and ¢, which correspond to the coaxial inputs of the ADC board. In this tutorial, we'll
only be using input i. As the ADC runs at 4x the FPGA rate, there are four parallel time sampled outputs: /0, i1, i2 and
i3. These outputs are 8.7 bit.

1 Inthe XSG core config block, we have selected adcO_clk as our clock, which is provided by the ADC card plugged into connector ZDOK 0.

Page 6 of 16

PFB_FIR_REAL

=] Function Block Parameters: pfb_fir_real x|
"plh_llr_raa\\ 1 =
Sige of PFB: (27 pris]
Total Number of Taps:
[&
Windowing Function: [hamming =]
Numbe of Siauitaneous Inputs: (2°7)
|2
N — hake Biplex
polt it pot_outt [o
poilnz poit_owz Input Bitwidth:
poli s polf_oud &
Goli_ind polt_outs Output Bitwidt
B
Coefficient Bituidt
B
Use Distibuted Memary for Cosffs
Jo
Add Latency e
|2
bult Latency
|2
ERAM Latency
[z |
oK I B Hep | sy |

There are two main blocks required for a polyphase filter bank. The first is the pfb_fir_real block, which divides the
signal into parallel ‘taps' then applies finite impulse response filters (FIR). The output of this block is still a time-domain
signal. When combined with the FFT_wideband_real block, this constitutes a polyphase filterbank.

This block was created by Henry Chen, and most of the documentation presented here is courtesy of Ben Blackman.

INPUTS/OUTPUTS

Port Data Type Description

sync bool A sync pulse should be connected here (see iIADC tutorial).

poll_inl inherited The (real) time-domain stream(s).

poll_in2

poll_in3 As the ADC has four parallel time sampled outputs: i0, i1, i2 and i3, we need four

poll_in4 parallel inputs for this PFB implementation.

PARAMETERS

Size of PFB How many points the FFT will have. The number of frequency channels will be half
this. We've selected 2'°=1024 points, so we'll have a 2°=512 channel filter bank.

Number of taps The number of taps in the PFB FIR filter. Each tap uses 2 real multiplier cores and
requires buffering the real and imaginary streams for 2°FBSIZ€ samples.
Generally, more taps means less inter-channel spectral leakage, but more logic is
used. There are diminishing returns after about 8 taps or so.

Windowing function Which windowing function to use (this allows trading passband ripple for steepness
of rolloff, etc). Hamming is the default and best for most purposes.

Number of The number of parallel time samples which are presented to the FFT core each

Simultaneous Inputs clock. The number of output ports are set to this same value. We have four inputs

? from the ADC, so set this to 2.

27)

Make biplex 0 (not making it biplex) is default. Double up the inputs to match with a biplex FFT.

Input bitwidth. The number of bits in each real and imaginary sample input to the PFB. The ADC

Page 7 of 16

outputs 8.7 bit data, so the input bitwidth should be set to 8 in our design.

Output bitwidth The number of bits in each real and imaginary sample output from the PFB. This
should match the bit width in the FFT that follows. 18 bits is recommended for the
ROACH.

Coefficient bitwidth The amount of bits each windowing function uses. The number of bits in each
coefficient. This is usually chosen to match the input bit width.

Use dist mem for Store the FIR coefficients in distributed memory (if = 1). Otherwise, BRAMSs are

coeffients used to hold the coefficients. 0 (not using distributed memory) is default

Latency There's normally no reason to change this unless you're having troubles fitting the

design into the fabric.

Quantization Behavior ~ Specifies the rounding behavior used at the end of each butterfly computation to
return to the number of bits specified above.

Bin Width Scaling PFBs give enhanced control over the width of frequency channels. By adjusting this
parameter, you can scale bins to be wider (for values > 1) or narrower (for values <
1).

Page 8 of 16

FFT_WIDEBAND_REAL

5!
’—m,wuebandﬁa\.) =
Size of FFT: [2°7)
B
Input/utput Bit Wicth
[18
Coeffcient Bt Width
B
Number of Simukaneaus Inputs: [2°7)
B
=yre sync_out
B Quantization Behavior[Flound (unbiased: Even Values) =l
. o
i o Ovelow Behavier wirap |

out! Add Latency
J2

Mult Latency
FFTEEe=12 B

BRAM Latency

which to store stage's coefficients in BRAM (2°7 bits]
Nuriher bits above which to store stage's delays in BRAM [2°7 bt o
I2 =i
T e I |

The FFT_wideband_real block is the most important part of the design to understand. The cool green of the FFT block
hides the complex and confusing FFT butterfly biplex algorithms that are under the hood. You do need to have a
working knowledge of it though, so | recommend reading Chapter 8 and Chapter 12 of Smith's free online DSP guide
(at http://wvww.dspguide.comy/).

Parts of the documentation below are taken from the documentation by Aaron Parsons and Andrew Martens on the
CASPER wiki (at http://casper.berkeley.edu/wik).

INPUTS/OUTPUTS
sync Like many of the blocks, the FFT needs a heartbeat to keep it sync'd
Shift Sets the shifting schedule through the FFT. Bit O specifies the behavior of stage 0,

bit 1 of stage 1, and so on. If a stage is set to shift (with bit = 1), then every sample
is divided by 2 at the output of that stage.

In this design, we've set Shift to 213-1
stage to prevent overflows.

— 1, which will shift the data by 1 on every

in0 Four inputs for the parallel data streams coming from the ADC, through the

in1 pfb_fir_real filter block, and into here. Just connect them up.

in2

in3

outo The FFT produces two signals, the real part (out0, cosine wave values) and the
outl imaginary part (outl, sine wave values). Following the lines you'll see that these

two inputs end up in an “odd” and “even” software register. This is then interleaved
in the spectrometer.py script to form a complete spectrum.

Data is output in normal frequency order, meaning that channel O (corresponding to
DC) is output first, followed by channel 1, on up to channel oN-1_1

Page 9 of 16

http://www.dspguide.com/

PARAMETERS

Size of FFT

How many points the FFT will have. The number of channels will be half this. We've
selected 2'°=1024 points, so we'll have a 2°=512 channel filter bank. This should
match up with the pfb_fir block.

Input/output bitwidth

The number of bits in each real and imaginary sample as they are carried through
the FFT. Each FFT stage will round numbers back down to this number of bits after
performing a butterfly computation.

This has to match what the pfb_fir is throwing out. The default is 18 so this
shouldn't need to be changed.

Coefficient bitwidth

The amount of bits for each coefficient. 18 is default.

Number of
simultaneous inputs

The number of parallel time samples which are presented to the FFT core each
clock. We have 2%=4 parallel data streams, so this should be set to 2.

Quantization Behavior

Specifies the rounding behavior used at the end of each butterfly computation to
return to the number of bits specified above. Here we'll just use Round (unbiased:
Even Values).

Overflow Behavior Indicates the behavior of the FFT core when the value of a sample exceeds what
can be expressed in the specified bit width. Here we're going to use Wrap as
Saturate will not make overflow corruption better behaved.

Add Latency Latency through adders in the FFT. Set this to 2..

Mult Latency Latency through multipliers in the FFT. Set this to 3.

BRAM Latency Latency through BRAM in the FFT. Set this to 2.

Convert Latency through blocks used to reduce bit widths after twiddle and butterfly stages.
Set this to 1.

Architecture Set to Virtex5, the architecture of the FPGA on the ROACH.

Use less This affects if complex multiplications use less multipliers or adders/logic. For

the complex multipliers in the FFT, you can use 4 multipliers and 2 adders, or 3
multipliers and a bunch or adders. So you can trade-off DSP slices for logic or
vice-versa. Set this to Multipliers.

Number of bits above
which to store
stage's coeff's in
BRAM

Determines the threshold at which the twiddle coefficients in a stage are stored
in BRAM. Below this threshold distributed RAM is used. By changing this, you
can bias your design to use more BRAM or more logic. We're going to set this
to 8.

Number of bits above
which to store
stage's delay's in
BRAM

Determines the threshold at which the twiddle coefficients in a stage are stored
in BRAM. Below this threshold distributed RAM is used. Set this to 9.

Multiplier
Specification

Determines how multipliers are implemented in the twiddle function at each
stage. Using behavioral HDL allows adders following the multiplier to be
folded into the DSP48Es in Virtex5 architectures. Other options choose
multiplier cores which allows quicker compile time. If selected, you can enter
an array of values allowing exact specification of how multipliers are
implemented at each stage. Leave this unchecked.

Use DSP48's for
adders

The butterfly operation at each stage consists of two adders and two
subtracters that can be implemented using DSP48 units instead of logic.
Leave this unchecked.

Page 10 of 16

REAL AND IMAGINARY BRAMS

=] Function Block Parameters: even x|

"Suhwstem (mask) fnk)

Output Data Type | ITERER]
Address width

[10

Data Width

[

Data Binary Point

data_in data_out o

Initial values [simulation only]
[n:2m11

Gample rate:

J1

oK. I Cancel Help | Spply |

arameter =lolx|
File Edit Wiew Simulation Formab Tools Help
DEeEd& tER|es 42 & r =foo | [im Y EHERE Y eEE®
In ')
itled_even_date_out ta_out
mem
Ready [100% [ode4s 7

The final blocks, re_channel_bram and im_channel_bram are shared BRAMs, which we will read out the values of
using the gpu_spec_init.py script.

PARAMETERS

Parameter Description
Output data type Unsigned

2"\(Address width) is the number of 32 bit words of the implemented BRAM. There is
no theoretical maximum for the Virtex 5, but there will be significant timing issues at

Address width bitwidths of 13. QDR or DRAM can be used for larger address spaces. Set this
value to 12 for our design.

Data binary point The binary point shoulq be set to zero. .The data going to the processor will be
converted to a value with this binary point and the output data type.

Initial values This is a test vector for simulation only. We can leave it as is.

Sample rate Set this to 1.

INPUTS/OUTPUTS

Port Description

Adadr Address to be written to with the value of data_in, on that clock, if write enable is high.

data_in The data input

We Write enable port

Writing the data to a register. This is simply terminated in the design, as the data has finally

oata_out reached its final form and destination.

Page 11 of 16

CONTROL REGISTERS

There are a few control registers, led blinkers and snap block dotted around the design too:

1. channel_select: Select which channel to record (should be set between 0 and 511)
2. start_capture Toggle from 1 back to 0 to start a new data capture.

3. capture_done: Set to 0 by the hardware when a capture is still in progress and 1 when
the capture is completed.

Hardware configuration

The tutorial comes with a pre-compiled bof file “File5b” at “Location4” , which is generated from
the model you just went through:

You don't need to telnet into the ROACH; all communication and configuration will be done by the
python control script.

Copy the bof file to be programed which is compiled by you , to the directory “Location2” after
changing the permissions of the file.

eg. for the bof file

File5b in the area Location7/Location12/

$ chmod a+x Location7/Location12/File5b

$ cp Location7/Location12/FileS5b Location2/

The tutorial comes with a python script called “File5d”. To use this, you need to have installed a few
python libraries. If you haven't already, go through the instructions on

http://casper.berkeley.edu/wiki/Corr

I'd recommend installing all the packages, and documenting any trouble you have on the discussion
page of the wiki. Also, iPython is used later on in this tutorial, so install that too.

Next, you need to set up your ROACH. Switch it on, making sure that:

. You have your ADC in ZDOKO, which is
the one nearest to the power supply.

. You have your clock source connected
to clk_i on the ADC, which is the second on the
right. It should be generating an 800MHz sine
wave with 0dBm power. Also feed the input
signal to the I+ input of the iIADC.

If set up correctly, it should look like the photo on the right.

Page 12 of 16

http://casper.berkeley.edu/wiki/Corr

7 The python script “File5d”

Once you've got that done, it's time to run the script. First, check that you've connected the ADC to
ZDOKQO, and that the clock source is connected to clk_i of the ADC.

The script can be run with 3 options. -c CHANNEL_SELECT will allow you to set which channel the
script will record by default. The data will be recorded in the data directory in a file named
channel<selected_channel_number>_out. -p will open up a continuously updating pylab plot of the
entire power spectrum to test the spectrometer. The script will use the precompiled boffile by default. To
specify a different boffile use the option -f followed by the file name or change the defaultbof="File5b' in
the python script “File5d”

Running the script like this, with a 200MHz tone feeding the IADC's I+ input:
Location5/File5d -c <Selected_channel_number> -p <roach IP> -b <BOF file>

eg. Location5/File5d -c 256 -p roach030172 -b File5b
#Enter the corresponding Location/File hames and roach namelIP.

will create a file hamed channel256 out in the “Location23” directory and will pull up a live
updating plot of the complete power spectrum that looks like the following figure :

10°

10°F E

10° F 5

Each line of the recorded data file contains continuous real and imaginary data from the same channel. The data folder
has a sample recording named channel256_out that contains data recorded with a 200MHz tone feeding an iADC.
Press Ctrl+c and then Enter in the terminal to stop this plot.

Page 13 of 16

PART TWO

GPU Spectrometer

Page 14 of 16

8 CUFFT

Now we will use the GPU to finely channelize this data. “File5g” uses the cuda fft library to do a 2048
point 1 dimensional fft on our recorded data. Refer to the CUFFT library documentation for more
information on the functions cuda has to offer.

Here is an overview of what “File5g” does (you should be able to refer to the comments in the file to
follow along) :

0 Read in which channel to process from the command line
0 Open the recorded data file Location23/channel<selected_channel_number>_out

0 Create pointers for cufftComplex data. This is a struct containing 2 floats (to store real and imaginary
data from each point) that the CUFFT library uses for complex ffts.

0 Allocate space on the cpu and gpu using cuda functions. The space on the cpu is allocated using
cudaHostMalloc rather than the standard malloc because it speeds up memory transfers
between that CPU memory to and from GPU.

0 Read the data from the file into the memory we allocated on the CPU.

0 Create an fft plan (if you are familiar with FFTW this works in a similar way). This tells CUDA we want
to do a complex to complex fft of length fftlen. It also allows multiple ffts to be batched
together but in this case we will only do 1 transform.

0 Move the recorded channel data from the CPU to the GPU.

0 Execute the FFT

0 Copy the FFT result from the GPU back to the CPU

0 Store the FFT result to a file named Location23/channel<selected_channel_number>_spectrum

0 Deallocate our fft plan and malloced memory.

The makefile included in the src directory will use nvce and the cufft library (included
with -lcufft) to compile “File5g” into an executable named “File5f”

Please note that few of the following steps (Copy back & forth) are not required if your PC has
the GPU capabilities. Follow these steps to copy the Location23/channel256_out , which is generated
by running the script file “File5d” above from a PC to the GPU PC for further channelize and zoom in
on a single channel data in software using a GPU. Login to a GPU PC and run .[File5f -c 256 . This
writes the channelized data to a file channel256_spectrum. Copy back this file to the PC for plotting ,
which is done in the next step using “File5e” script. eg. for channel 256 :

USER@LOCAL_PCS$ scp -r Location23/channel256_out USER1@GPU_PC:/home/USER1/Location25/
USER@LOCAL_PC$ ssh -X USER@GPU_PC
USER1@GPU_PC ~$ cd Location25
USER1@GPU_PC:Location25$ nvcc -o File5f -Icufft Filebg
needs to be done if any changes done in the source file.
USER1@GPU_PC:Location25$./File5f -c 256
This writes the output to file , “channel256_spectrum”
USER1@GPU_PC:Location25$
scp -r lhome/USER1/Location25/channel256_spectrum USER@LOCAL PC:/Location23/
USER1@GPU_PC:Location25$ exit

Page 15 of 16

mailto:gmrt@192.168.5.240
mailto:USER@GPU
mailto:USER@GPU
mailto:USER@GPU
mailto:jroy@192.168.5.241

9 The python script “File5e”

The command you ran in the previous step File5f -c 256 reads data from the Location23/channel256_out
file, channelizes it and writes the spectrum in the file Location25/channel256_spectrum on the GPU PC.
After getting that file back in our local pc , we can plot the power spectrum using script file “File5e” to see the
finely channelized data from channel 256:

File5e -c <Channel _nu>

eg. Location5/File5e -c 256 -d Location23

OO+ 8=

10 Conclusion

After completing this tutorial you should be able to channelize data on a ROACH and zoom in on a
single channel using a GPU. To continuously feed data into the GPU, you will need to packetize the
data and send it to the server over 10GbE. Refer to Tutorial 2 for more information on using 10GbE
on the ROACH.

Page 16 of 16

	1 The Hardware and software required for this tutorial.
	2 Introduction
	3 Setup
	4 Simulink Design Overview
	5 Detailed Blockumentation
	 ADC
 http://casper.berkeley.edu/wiki/Adc
	INPUTS
	OUTPUTS

	 PFB_FIR_REAL
 http://casper.berkeley.edu/wiki/Pfb_fir_real
	INPUTS/OUTPUTS
	PARAMETERS

	 FFT_WIDEBAND_REAL
 http://casper.berkeley.edu/wiki/Fft_wideband_real
	 INPUTS/OUTPUTS
	 PARAMETERS

	 REAL AND IMAGINARY BRAMS

	 PARAMETERS
	 INPUTS/OUTPUTS

	 CONTROL REGISTERS

	6 Hardware configuration
	7 The python script “File5d”
	8 CUFFT
	9 The python script “File5e”
	

	10 Conclusion

