>
A f” 2 A
-
CASPER SKA SOUTH AFRICA B,

AAAAAAAAAAAAAAAAAAAA MNCRA « TTFR

CASPER Workshop
Tutorial 4: Wideband Pocket Correlator

Dev. By : W. New (Version 1)

Doc. By : Irappa M. Halagali , Mekhala V. Muley & Shelton Gnanaraj J. (version 2)

Expected completion time: 2hrs

Contents:

The Hardware and software required for this tutorial.
Introduction

Background

Setup

Creating Your Design

Simulation & Compilation

Software

Conclusion

ONoar®WNPE

1 The Hardware and software required for this tutorial.
1. PC . Dell Intel(R) Core(TM) i3 CPU 530 @ 2.93GHz width 64 bit & 4GB RAM

2. OS . Linux 2.6.35-30-generic #54-Ubuntu 10.10 SMP x86_64 GNU/Linux

3. Matlab : 2008a

4. Xilinx . version 11.5

5. Casper . gits_100511

6. corrpack : corr-0.6.5

7. Python . version 2.6

8. minicom . version 2.4 (compiled on Jun 3 2010)

9. ROACH unit with iADC card : version 1.0 Rev 3 2009,

uboot : uboot-2010-07-15-r3231-dram,

Linux Kernel Image : ulmage-jiffy-20091110,

iADC : BEE2 DUAL 1 GHz ADC BOARD version 1.1
10. Signal generator to feed clock of 800MHz , 0dbm to ROACH unit through iADC's clk_i input.
11. Input signals from waveform generator should be of -13dbm@400 MHz BW (Total power over BW) to the
I+ & Q+ inputs of IADC.

Page 1 of 16

2 Introduction

In this tutorial, you will create a simple Simulink design which uses the iADC board on ROACH and
the CASPER DSP blockset to process a wideband signal, channelize it and output the visibilities
through ROACH's PowerPC.

'Introduction to Simulink' Introduction to Simulink, 'Implementation of green block' Coarse Delay
Block - A Green Block, '10 Gbe Interface' Tutorial 10GbE and are reasonably comfortable with
Simulink and basic Python. We will focus here on higher-level design concepts, and will provide you
with low-level detail preimplemented.

3 Background

Some of this design is similar to that of the 'The Wideband Spectrometer' tutorial. So completion of
that is recommended.

3.1 Antennae and Baselines

When doing correlation on a set of antennae we introduce the term baseline. A baseline is the
product of the signal from two antennas. We calculate all baselines. For example, if we have 3
antennae, A, B and C, we need to perform correlation across each baseline, AB, AC and BC. We
also need to do auto-correlations, which will give us the power in each signal. ie AA, BB, CC. We will
see this implemented later.

3.2 Polarization

Dish type receivers are typically dual polarized (horizontal and vertical feeds). Each
polarization is fed into separate ADC inputs. When correlating these antennae, we differentiate
between full Stokes correlation or a half Stokes method. A full Stokes correlator does cross
correlation between the different polarizations (i.e. for a given two antennas, A and B, it multiplies the
horizontal feed from A with the vertical feed from B and vice-versa). A half stokes correlator only
correlates like polarizations with each other, thereby halving the compute requirements.

Our correlator here is a half Stokes correlator. We will be feeding the similar polarizations of
two antennae to the two inputs of the single ADC.

3.3 The Correlator

The correlator we will be designing is a 2 antenna single channel correlator i.e it takes the similar
polarization from two antenna and correlates the signal, hence we will be populating only one adc
board on the ROACH.

Page 2 of 16

https://casper.berkeley.edu/wiki/Introduction_to_Simulink
https://casper.berkeley.edu/wiki/Tutorial_10GbE
https://casper.berkeley.edu/wiki/Coarse_Delay_Block_-_A_Green_Block
https://casper.berkeley.edu/wiki/Coarse_Delay_Block_-_A_Green_Block

4 Setup

The lab at the workshop is preconfigured with the CASPER libraries, Matlab and Xilinx tools.

Please refer the file “LOCATIONSandFILES.pdf” in the home/Desktop area or
LOCATIONSandFILES slides displayed , for the locations/directories and files information
required in the tutorial. Note : The Date and Time portion of the BOF file nhame will be
different! It depends upon when (Date & Time) you complile your model file !

Note : All the following cable connections and entries in the /etc/* files of the workshop PCs are
already done.You are not required to do any of the following setup and they are informatory in
nature.You can verify points 1 to 4 on the setup you are working on and if you have any doubts
regarding them kindly contact the lab instructor. Kindly go through point 5 to decide the way you will
implement the tutorial.

i} Connect the Serial port cable between the ROACH board's P2 connector and serial port of the
PC (on which minicom program exists).

Bl Connect the Ethernet cable to J25 port of the ROACH board from the PCs ethl port. /etc/ethers
file should have mac address and corresponding ip address. In the /etc/network/interfaces file ,
ethl should be configured. And in the file /etc/hosts , ip address and corresponding roach
board(host) name entry to be done.

Bl Feed the clock of 600MHz , 0 dbm (~630mvPkPk without any splitter) to the clk_i input of the
iIADC card (which is plugged in the ZDOK 0 connector near to mmc card/power supply) from the
signal generator. The python script ” generates the soft sync
and hence there is no need to give a external sync pulse.

Bl Connect the input signals to I+ & Q+ of the iADC 0 (in the ZDOK 0 connector) from the noise
generator. The signals will be referred as a(adcOl+), b(adcOQ+). The input signals should be of
-13dbm(~282mvPkPk with 2 way power splitter @300 MHz BW (total power over BW) at the iIADC
card input. A low pass filter of 200 Mhz BW is introduced in the signal path to show a band shape.
The output will generate two self signals “aa”, “bb” and one cross “ab” for this tutorial. Thus we get 2
auto-correlations and 1 cross-correlation.

Bl Either Create your own directory at {USER_DIR]” where you can save and compile your model
file or save any work that you may do. There are three ways to implement this tutorial.

A)You can either copy the mdl file “[TUT4_MDL_FILE]” from the the area “[STD_MDL_DIR]" to the
directory that you have created at “[lUSER_DIR]" and compile it in the MSSGE (Matlab-Simulink-
System Generator) environment

OR

B)You can use the bof file kept in the area “[FPGA_PROG_BOF_DIR]/[TUT4_BOF_FILE]" to
directly program (using the python script explained in “Software”) the FPGA and look at the results

OR

C)Follow the steps given below to create the mdl file similar to the file “[STD_MDL_DIR)/
[TUT4_MDL_FILE]".

6. Start the matlab :
$cd

Page 3 of 16

5 Creating Your Design

Create a new model:

Start Matlab and open Simulink (either by typing simulink on the Matlab command line, or by clicking
the Simulink icon in the taskbar). Create a new model and add the Xilinx System Generator and
XSG core config blocks as before in Introduction to simulink.

5.1 System Generator and XSG Blocks

v By now you should have used these blocks a number of times. Pull the System
Generator block into your design from the Xilinx Blockset menu under Basic
— Elements. The settings can be left on default.

System
Generatar The XSG block can be found under the BEE_XPS System Blockset. Set the
Hardware platform to ROACH:sx95t, the Clock Source to adcO_clk and the rest of
MSSGE the configuration as the default.
FTDACH

%5G core config Make sure you have an ADC plugged into ZDOKO to supply the FPGA's clock!

Set the XSG core config block as shown below

=) Block Parameters: XSG core config ®

xsg core config (mask) (link)

The XSG Core Config block is used to configure the System Generator design
for the bee_xps toolflow. Settings here are used to configure the

Xilinx System Generator block parameters automatically, and control too flow
script execution. It needs to be at the top level of all designs being eompiled
with the bee_xps toolflow.

Parametsrs

Hardware Platform ROACH:sx95t

User IP Clock Source adc0_clk

User IP Clock Rate (MH z)
151

Sample Period
1

Synthesis Tool: XST

OK Cancel| Help | Aol

Page 4 of 16

5.2 Sync Generator

syhc

-C- ™ zim_in reg_in rst

mrst

sys_rst a¢NC_gen

The Sync Generator puts out a sync pulse which is used to synchronize the blocks in the design.
See the CASPER memo on sync pulse generation for a detailed explanation and the iBOB iADC
tutorial for an example on its basic use.

Whenever a sys_rst is given through the software register a mrst signal is generated which resets

the entire MAC block. Sync pulse is generated with a period of 2*27 clock cycles and resets all the
blocks.

5.3 ADC

i0fF

- i f
= LB i b

Sine Wave i3F
ol ¢

ol f

—— i g o2 F

o3

outofrangeil

outofrangeil F

T ——M{5im_syhe outofrangeql
H B outofranedl f
Fulze syncl F
Generator syrct
-

1 " zim_data_valid 2i:§§ 5
Constantl data_valid F

adlc

Connection of the ADC is as in Wideban spectrometer tutorial except for the sync outputs.

Page 5 of 16

Set up the ADC as shown below

=] Function Block Parameters: adc

—adc (mask) (parameterized link)

The ADC block conwverts analog inputs to digital outputs.
Every clock cycle, the inputs are sampled and digitized
to 8 bit binary point numbers in the range of [-1, 1) and
are then output by the adc.

—Parameters

ADGC board| adco |

ADC clock rate (MH z)
|sn4

| ADC interleave mode

Sample period

|1

QK Cancel

Help | Ay

Page 6 of 16

For the purposes of simulation (and to satisfy Simulink's requirements that all inputs be connected),
we need to put input signals into the ADCs. These blocks are pulse generators in the case of sync
inputs and any analogue source for the RF inputs (noise, CW tones etc).

The setup for these blocks is as shown below

Source Block Parameters: Sine Wave

Source Block Parameters: Pulse Generator

— Sine Wave

Cutput a sine wave:
Q(t) = Amp*Sin({Freq’t+Phase) + Bias

Sine type determines the computational technique used. The parameters in the two types
are related through:

Samples per period =2*pi/ (Frequency * Sample time)
Number of offset samples = Phase * Samples per period / (2*pi)

Use the sample-based sine type if numerical problems due to running for large times (e.g.
overflow in absolute time) accur.

—Pulse Generator

Output pulses:

if (t >= PhaseDelay) && Pulse ison
Y () = Amplitude

else

Y({) =0

end

Pulse type determines the computational technigue used.
Time-based is recommended for use with a variable step solver, while Sample-based is

recommendad for use with a fixed step solver or within a discrets portion of a made| using
avariable step solver.

—Parameter
Sine type: Sampls based !
Time (t): Use simulation time !
Amplitude:
|1
Bias
|0

Samples per period:

|16
Number of offset samples:
|0

Sample time:

|025

7 Interpret vector parameters as 1-D

CK Cancel | Help |

— Parameter:
Pulse type: Sample based f
Time (t}: Use simulation time f
Amplitude:

|1
Period (number of samples):

|242?

Pulse width (number of samples):

|1

Phase delay (number of samples)

|0

Sample time

|1

7 Interpretvector parameters as 1-D

OK gancell ﬂelpl

Page 7 of 16

5.4 Software Registers

delay_a

P e

delay b

Fim_imeg_in
Fim_imeg_in

This part of the Simulink design sets up a software register which can be configured through the
controlling software from the PC to control the correlator. Set the yellow software register's 10
direction as from processor. You can find it in the BEE_XPS System blockset. The constant block
input to this register is used only for simulation.

There are several such software registers in the design, a couple of those are shown in the above

figure.

5.5 Coarse Delay Block

YO
delay

eh
data_ini
data_in2
data_in3
data_ind

sync_out
data_outi
data_out2
data_out3
data_outd

o

W

W

delay _wideband_prog

The coarse delay block can be found under Casper DSP Blockset — Delays. The delay block is

used to delay the simultaneous data stream by specified number of clock cycles.

Configure the delay blocks as shown below:

=] Function Block Parameters: delay_wide?

delay_wideband_prog (mask)

FParameters

2

BRAM Latency
3

Max Delay (Sample Clks)

Mumber of Simultansous Inputs(247)

Select type of BRAM Dual Port

oK Cancel

Help

By

Page 8 of 16

5.6 PFB and FFTs

The PFB FIR and FFT are the heart of this design. The PFB and the FFT are connected as shown

below
-C- —™zim_in reg_in
fft_shift
SKNE
-2
YN aync_out [FE] shift syne_out &
poll_ind poll_outt F——™{dirdout | i outid f
pall_in2 poll _out2 W {dirgiout | in1 i |
pall_in3 poll _out3 W {dirgiout | in2 I
poll_ind poll_outd ————————W{dirdont | in3 of
pol2_ind pol2_out1 fit_wideband_real2
. 10 stages
pol2_inZ pol2_out2 (18,18}
pol2_in3 pol2_out3 Trumcate
pol2_ind pol2_outd Wrap
—— =
pfl_fir_reall i syhc_out
taps=4, add_latency=2 shift A
] it F—#in0 outl
—{dlirciout
in1 outl
—{dirviout —in2
{clirciout F—in3 5
fft_wideband_reall
10 stages
(18,15)
Truncate
it

Page 9 of 16

Configure the PFB_FIR_real blocks as shown below:

Function Block Parameters: pfb_fir_reall

Fold adders into DSP's: Causes adders to be absorbed into DSP blocks [
(supported in Virtexs)

- Parameter

Size of PFB: (27 pnts)

/=

Total Number of Taps:
|4

Windowing Function: hamming r

MNumberof Simultanecus Inputs: (247)

|2

Make Biplex
K
Input Bitwidth:
]
Dutput Bitwidth:
|1s

Coefficient Bitwidth:
| 8
Use Distributed Msmory for Cosffs
| 0
Add Latency
|2

Mult Late ney
|=
ERAM Latency
|2

Convert lats noy
|1

Quantization Behavior Round (unbiased: +/~ Inf) &

Bin Width Scaling (normal=1)
|1

__| Specify multiplier use (behavioral if not specified)

Multiplier specification (0=core, 1 ==mbedded, 2=be havicural} {left=1st tap)

|2 2]

7 Fold adders into DSPs F

oK | gancell ﬂelpl Apely

Downshifting block
There is potential to overflow the first FFT stage if the input is periodic or signal levels are high as
shifting inside the FFT is only performed after each butterfly stage calculation. For this reason, we
recommend casting any inputs up to 18 bits with the binary point at position 17 (thus keeping the
range of values -1 to 1), and then downshifting by 1 bit to place the signal in one less than the most
significant bits.

din cout F

downishitt

The downshifing block is a static block and hence is not present in the casper library. The block has
to be copied from the “ ” mdl file present in the location

Page 10 of 16

The fft_wide_band_real block should be configured as follows:

=1 Function Block Parameters: fit_wideband_reall

— fit_wideband_real (mask)

—Parameters

Size of FFT: (27)

=

InputiOutput Bit Width

|1s

Coefficient Bit Width

|18

Mumber of Simultanecus Inputs:

27)

|2

Quantization Behavior Truncate

¥

Cwerflow Behavior Wrap

L

Add Latency

|2

Mult Late ncy

|3

ERAM Latency

|2

Convert latency

|1

Architecture Virexs

L

Use less multiplisrs

L

Mumber bits abowve which to store stage's coefficients in BRAM (27 bits)

|8

Mumber bits abowe which to store stage's delays in BRAM (277 bits)

|8

[DSP48 adders in butterfly

__| Specify multiplier use (behavioral HDL if not specified)

OK | Cancel

F

ﬂelpl Apely

5.7 Fine Delay Block

ayNc
shift
ind
ini
in2
n3

synic_out
outd
outl

of

it _wideband_real

10 stages

(18,18)

Truncate
Wrap

Page 11 of 16

The fine delay block is parameterised as shown below

=3 Function Block Parameters: fft_wideband_reall

—ffit_wideband_real (mask)

— Parameters

Size of FFT: {2/7)

E

InputOutput Bit Width

|18

Coefficient Bit Width

|18

Number of Simultanscus Inputs: (247)

|2

Quantization Behavior Truncate

L3

Owverflow Behavior Wrap

f

Add Latency

|2

Mult Latency

|5

BRAM Latency

|2

Conwvert latency

|1

Architecture Virtex5

L

Use less multipliers

L3

Mumber bits abowe which to store stage's coefficients in BRAM (277 bits)

|a

Mumber bits abowe which to store stage's delays in BRAM (2°7 bits)

|a

_ | Specify multiplier use (behavioral HDL if not specified)

[DSP48 adders in butterfly
oK Cancel

ﬂelpl _r’_‘_»-p.a;ivl

Page 12 of 16

5.8 Equiliser

The equaliser block is set to 512 FFT channels and the Subsystem is designed as seen below. The
equiliser reduces the bit growth that was introduced in the PFB and FFT. We can do this because
we do not need the full dynamic range.

BTNyl
ind

sync_out F

doutd F
inl

scale_poll dautl ¢

scale pol2 clip <elip1]

ec_anti

sim_ime_in

sale

The block is a static block and hence is not present in the casper library. The block has to be copied
from the ” mdl file present in the location “ 7,

5.9 LEDs

The following sections are more periphery to the design and will only be touched on. By now you
should be comfortable putting the blocks together and be able to figure out many of the values and
parameters.

As a kind of debug output we can wire up the LEDs to certain signals. We light an LED with every
sync pulse. This is a sort of heartbeat showing that the design is clocking and the FPGA is running.

The led “led_new_acc” gives a visual indication of when an accumulation is complete while the
“led_overflow” led indicates any clipping encountered in ADC, FFT or Qunatiser stages.

Since the signals might be too short to light up an LED and for us to actually see it (consider the
case where a single ADC sample overflows; 1/800MHz is 1.25nS — much too short for the human
eye to see) we add a negedge delay block which delays the negative edge of a block, thereby
extending the positive pulse. A length of 223 gives about a 10ms pulse.

Page 13 of 16

Fim_imeg_in m

acc_lend

gpio_out sim_out

ledd_overflow

prulze_ext led_nese_ane
pulse_ext2 led_syhie_aut

5.10 The MAC operation

The multiply and accumulate is performed in the dir_x (direct-x) blocks, so named because
baselines are calculated directly, in parallel (as opposed to the packetised correlators' X engines
which process serially).

Accumulation for each baseline takes place in BRAM using the same simple vector accumulator
used in the 'wideband spectometer' tutorial.

gpio_out sim_out

led_new_ace

e NEW _ans

data_ind

data_out0
data_in1
data_in2 data_outl new_acc_ack P

data_ing

mrst
@Sim_im'&g_iﬂ acc_len data_out3

acc |eh acc_chtrl dir_x=1

data_out2

Page 14 of 16

The MAC block is a static block and hence is not present in the casper library. The block has to be
copied from the *“ ” mdl file present in the location

CONTROL.:

Sys_rst software register is for resetting the complete design. Sync LED provides a “heartbeat”
signal to instantly see if your design is clocked sensibly. Similarly the coarse delay, fractional delay
and fringe stop values can be provided runtime via script. New accumulation LED gives a visual
indication of data rates and dump times. Also the Overflow LED is the indication of data overflow at
any stage in the design flow.

6 Compilation

By giving bee_xps command in the matlab window , we will get a pop-up. Make sure the file
displayed in the pop-up is correct and then press RUN to start the compilation. After compilation , it
creates a directory named after the model file name without the .mdl extension. There is a sub
directory named bit_files. In this bit_files directory there are .bit and .bof file. We need the .bof
file to program the FPGA.

You need to save this .bof file at location

7 Software

The python scripts are located in the “ ” directory. We first need to run
“ ” to program the FPGA and configure the design. Then we can
run the script “ ” to plot the self, cross and the phase.

Copy the bof file to be programed which is compiled by you , to the directory
“ ” after changing the permissions of the file.

eg. for the bof file in the area
$ chmod a+x
$cp
Usage: <ROACH namel/IP> -b <bof file>
eg.
$ roach030172 -b

#Enter the corresponding Location/File nhames and roach nhamel/IP.

Note : Enter your roach number! You will see on display;

Page 15 of 16

$ <ROACH name/IP> -|

#Enter the corresponding Location/File names and roach namelIP.
This script grabs auto-correlations, cross-correlation and the phase from the brams and plots them.
The following plot gives the self spectrum, cross correlation and the phase between the two input

signals. Option - for logirithm scale.
an Figure 1 (on rchpc4) - + X

Power: Self-0 Spectrum number 35

[P

SRSy

o Bk Bk B

P TP [P [[e

o
S

AR

160Fuw1-_-r. Sﬁﬁbl 5p|-_-l_tru35|n||unlb1-_-l 3&;0 5('.iID

e D
i

=
Co
=

BRI

e e e
(=]

Phase in Deg .,
OrBOGTI RS+

(=]
ek

Power (log, arbRowis) (log, arbRomes) (log, arb units)

100 200 300 300 500
FFT channel number

8 Conclusion

Pocket correlator tutorial completed. We have observed the auto-correlations AA & BB for
the two inputs we have fed to IADC and we have also observed the cross power and phase spectrum.

Page 16 of 16

	1 The Hardware and software required for this tutorial.
	2 Introduction
	3 Background
	3.1 Antennae and Baselines
	3.2 Polarization
	3.3 The Correlator

	4 Setup
	5 Creating Your Design
	 Create a new model:
	5.1	System Generator and XSG Blocks
	5.2	Sync Generator
	5.3	ADC
	5.4	Software Registers
	5.6	PFB and FFTs
	5.7	Fine Delay Block
	5.8	Equiliser
	5.9	LEDs
	5.10 The MAC operation

	6 Compilation
	8 Conclusion

