
CASPER Workshop
Tutorial 3: Wideband Spectrometer

Dev. By : Jason Manley and Danny Price

Doc. By : Irappa M. Halagali gmrt/ncra/tifr

Expected completion time: 2hrs

Contents :

1. The Hardware and software required for this tutorial.
2. Introduction
3. Spectrometer basics
4. Setup

 PARTONE
5. Simulink design overview
6. Detailed blockumentation

 PART TWO
7. Hardware configuration
8. The python script “File3d”
9. iPython walkthrough
10. The python script “File3d” notes
11. Conclusion

1. The Hardware and software required for this tutorial.
1. PC : Dell Intel(R) Core(TM) i3 CPU 530 @ 2.93GHz width 64 bit & 4GB RAM
2. OS : Linux 2.6.35-30-generic #54-Ubuntu 10.10 SMP x86_64 GNU/Linux
3. Matlab : 2008a
4. Xilinx : version 11.5
5. Casper : gits_100511
6. corr packages: corr-0.6.5
7. Python : version 2.6
8. minicom : version 2.4 (compiled on Jun 3 2010)
9. Wireshark : Running on Linux 2.6.35-30-generic, with libpcap version 1.1.1, GnuTLS 2.8.6, Gcrypt 1.4.5.
10. TCPdump : tcpdump-4.1.1
11. GULP : version 2.0, January 2004
12. iperf : version 2.0.4 (7 Apr 2008) pthreads

Page 1 of 20

13. jperf : version 2.0.2
14. ROACH unit with iADC card. : version 1.0 Rev 3 2009 , uboot : uboot-2010-07-15-r3231-dram , Linux Kernel Image :
uImage-jiffy-20091110 and iADC : BEE2 DUAL 1 GHz ADC BOARD version 1.1
15. Signal generator to feed clock of 800MHz , 0dbm to ROACH unit through iADC's clk_i input.

2 Introduction

A spectrometer is something that takes a signal in the time domain and converts it to the
frequency domain. In digital systems, this is generally achieved by utilising the FFT (Fast Fourier
Transform) algorithm. However, with a little bit more effort, the signal to noise performance can be
increased greatly by using a Polyphase Filter Bank (PFB) based approach.

When designing a spectrometer for astronomical applications, it's important to consider the
science case behind it. For example, pulsar timing searches will need a spectrometer which can
dump spectra on short timescales, so the rate of change of the spectra can be observed. In contrast,
a deep field HI survey will accumulate multiple spectra to increase the signal to noise ratio. It's also
important to note that “bigger isn't always better”; the higher your spectral and time resolution are, the
more data your computer (and scientist on the other end) will have to deal with. For now, let's skip the
science case and familiarize ourselves with an example spectrometer.

In this tutorial, we will build a 400MHz bandwidth, 2048 channel, PFB based spectrometer on
the ROACH. You'll need to have done Tutorial 1, 2 and the iADC tutorial1. You should also have
installed python, iPython, corr, aipy, numpy and pylab.

As far as hardware goes, you'll need:

• a ROACH board;
• an iADC, which should be connected to ZDOK0 on the ROACH; and
• a clock source, such as a signal generator, which should be connected to clk_i on the iADC.

You'll need to be familiar with the basic concepts of sampling, have a solid understanding of what a
Fourier transform is, and have a vague idea of what a FFT is. A good reference is Smith's free online
DSP guide (at http://www.dspguide.com/); in particular, have a read of chapters 3, 8 and 12.

3 Spectrometer Basics

When designing a spectrometer there are a few main parameters of note:

• Bandwidth: The width of your frequency spectrum, in Hz. This depends on the sampling rate; for complex
sampled data this is equivalent to:

BW=sampling rate=
1

sampling period
.

In contrast, for real or Nyquist sampled data the rate is half this:

1 While the iADC tutorial is for an iBOB, you can follow the iADC tutorial on the ROACH by simply changing the XSG core config from 'iBOB' to
'ROACH'. http://casper.berkeley.edu/wiki/Tutorials#IBOB

Page 2 of 20

https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/uboot/uboot-2010-07-15-r3231-dram
http://www.dspguide.com/
http://casper.berkeley.edu/wiki/Tutorials#IBOB
https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/linux/uImage-jiffy-20091110

BW=
sampling rate

2
=

1
2×sampling period

,

as two samples are required to reconstruct a given waveform2.

• Frequency resolution: The frequency resolution of a spectrometer, Δf, is given by

 f =
BW

no.channels
,

and is the width of each frequency bin. Correspondingly, Δf is a measure of how precise
you can measure a frequency.

• Time resolution: Time resolution is simply the spectral dump rate of your instrument. We generally accumulate
multiple spectra to average out noise; the more accumulations we do, the lower the time resolution. For looking
at short timescale events, such as pulsar bursts, higher time resolution is necessary; conversely, if we want to
look at a weak HI signal, a long accumulation time is required, so time resolution is less important.

4 Setup

The lab at the workshop is pre-configured with the CASPER libraries, Matlab and Xilinx tools.
Please refer the file “LOCATIONSandFILES.pdf” in the home area or L OCATIONSandFILES
slides displayed , for the locations/directories and files information required in the tutorial. Note :
The Date and Time portion of the BOF file name will be different! It depends upon when (Date &
Time) you complile your model file !

Note : All the following cable connections and entries in the /etc/* files of the workshop PCs are
already done.

1. Connect the Serial port cable between the ROACH board's P2 connector and serial port of the
PC (on which minicom program exists).

2. Connect the Ethernet cable to J25 port of the ROACH board from the PCs eth1 port. /etc/ethers
file should have mac address and corresponding ip address. In the /etc/network/interfaces file ,
eth1 should be configured. And in the file /etc/hosts , ip address and corresponding roach
board(host) name entry to be done.

3. Feed the clock of 800MHz , 0 dbm to the clk_i input of the iADC card from the Signal generator

4. Either copy the mdl file “File3 a ” from the the area “Location 3 ” or follow the steps given below
to create the mdl file similar to the file Location 3 / File3 a after creating your own directory at
“Location23” to save and compile your model file or the bof file “File3b” is kept in the area
“Location2” to directly program into the FPGA and look at the results.

 5. Start the matlab :
 $ cd Location1
 Location1$./File0 &

2 For a introduction to sampling, read http://www.dspguide.com/ch3.htm

Page 3 of 20

PART ONE
Simulink / CASPER Toolflow

5 Simulink Design Overview
If you're reading this, then you've already managed to find all the tutorial files. Jason has

gone to great effort to create an easy to follow simulink model that compiles and works. By now, I
presume you can open the model file and have a vague idea of what's happening.

The best way to understand fully is to follow the arrows, go through what each block is doing
and make sure you know why each step is done. To help you through, there's some
“blockumentation” in the appendix, which should (hopefully) answer all questions you may have. A
brief rundown before you get down and dirty:

• The all important Xilinx token is placed to allow System Generator to be called to compile the design.

• In the MSSGE block, the hardware type is set to 'ROACH:sx95t” and clock rate is specified as 200MHz.

• The input signal is digitised by the ADC, resulting in four parallel time samples of 8 bits each clock cycle. The
ADC runs at 800MHz, which gives a 400MHz nyquist sampled spectrum. The output range is a signed number
in the range -1 to +1 (ie 7 bits after the decimal point). This is expressed as fix_8_7.

• The four parallel time samples pass through the pfb_fir_real and fft_wideband_real blocks, which together
constitute a polyphase filter bank. We've selected 212=4096 points, so we'll have a 211=2048 channel filter bank.

• You may notice Xilinx delay blocks dotted all over the design. It's common practice to add these into the design
as it makes it easier to fit the design into the logic of the FPGA. It consumes more resources, but eases signal
timing-induced placement restrictions.

• The real and imaginary (sine and cosine value) components of the FFT are plugged into power blocks, to
convert from complex values to real power values by squaring. They are also scaled by a gain factor before
being quantised...

• These power values are then requantized by the quant0 block, from 36.34 bits to 6.5 bits, in preparation for
accumulation. This is done to limit bit growth.

• The requantized signals then enter the vector accumulators, vacc0 and vacc1, which are simple_bram_vacc
32 bit vector accumulators. Accumulation length is controlled by the acc_cntrl block.

• The accumulated signal is then fed into software registers, odd and even. Without further ado, open up the
model file and start clicking on things, referring the blockumentation as you go.

Page 4 of 20

6 DETAILED BlOCKUMENTATION

 ADC
 http://casper.berkeley.edu/wiki/Adc

The first step to creating a frequency spectrum is to digitize the signal. This is done with an ADC – an Analogue to

Digital Converter. In Simulink, the ADC daughter board is represented by a yellow block. Work through the
“iADC tutorial” if you're not familiar with the iADC card.

The ADC block converts analog inputs to digital outputs. Every clock cycle, the inputs are sampled and digitized
to 8 bit binary point numbers in the range of -1 to 1 and are then output by the ADC. This is achieved through the use of
two's-compliment representation with the binary point placed after the seven least significant bits. This means we can
represent numbers from -128/128 through to 127/128 including the number 0. Simulink represents such numbers with a
fix_8_7 moniker.

ADCs often internally bias themselves to halfway between 0 and -1 (ie the center of the range of representable
values). This means that you'd typically see the output of an ADC toggling between zero and -1 when there's no input. It
also means that unless otherwise calibrated, an ADC will have a negative DC offset.

The ADC has to be clocked to four times that of the FPGA clock. In this design the ADC is clocked to 800MHz,
so the ROACH will be clocked to 200MHz3. This gives us a bandwidth of 400MHz, as Nyquist sampling requires two
samples (or more) each second.

 INPUTS

sim_in Input for simulated data. It's useful to connect up a simulink source, such as
“band-limited white noise” or a sine wave.

sim_sync Simulated sync pulse input. In this design, we've connected up a constant with
value '1'.

sim_data_valid Can be set to either 0 (not valid) or 1 (valid).

 OUTPUTS
The ADC outputs two main signals: i and q, which correspond to the coaxial inputs of the ADC board. In this tutorial,
we'll only be using input i. As the ADC runs at 4x the FPGA rate, there are four parallel time sampled outputs: i0, i1, i2
and i3. As mentioned before, these outputs are 8.7 bit.

3 In the XSG core config block, we have selected adc0_clk as our clock, which is provided by the ADC daughter card plugged into connector ZDOK0.

Page 5 of 20

 PFB_FIR_REAL
 http://casper.berkeley.edu/wiki/Pfb_fir_real

There are two main blocks required for a polyphase filter bank. The first is the pfb_fir_real block, which divides the
signal into parallel 'taps' then applies finite impulse response filters (FIR). The output of this block is still a time-domain
signal. When combined with the FFT_wideband_real block, this constitutes a polyphase filterbank.

 INPUTS/OUTPUTS

Port Data Type Description
sync bool A sync pulse should be connected here (see iADC tutorial).
pol1_in1
pol1_in2
pol1_in3
pol1_in4

inherited The (real) time-domain stream(s).

As the ADC has four parallel time sampled outputs: i0, i1, i2 and i3, we need four
parallel inputs for this PFB implementation.

 PARAMETERS

Size of PFB How many points the FFT will have. The number of frequency channels will be half this.
We've selected 212=4096 points, so we'll have a 211=2048 channel filter bank.

Number of taps The number of taps in the PFB FIR filter. Each tap uses 2 real multiplier cores and

requires buffering the real and imaginary streams for 2PFBSize samples. Generally,
more taps means less inter-channel spectral leakage, but more logic is used. There
are diminishing returns after about 8 taps or so.

Windowing function Which windowing function to use (this allows trading passband ripple for steepness of
rolloff, etc). Hamming is the default and best for most purposes.

Number of
Simultaneous Inputs

(2?)

The number of parallel time samples which are presented to the FFT core each clock.
The number of output ports are set to this same value. We have four inputs from the
ADC, so set this to 2.

Make biplex 0 (not making it biplex) is default. Double up the inputs to match with a biplex FFT.

Input bitwidth. The number of bits in each real and imaginary sample input to the PFB. The ADC
outputs 8.7 bit data, so the input bitwidth should be set to 8 in our design.

Page 6 of 20

Output bitwidth The number of bits in each real and imaginary sample output from the PFB. This
should match the bit width in the FFT that follows. 18 bits is recommended for the
ROACH (18x25 multipliers) and iBOB/BEE2 (18x18 multipliers).

Coefficient bitwidth The number of bits in each coefficient. This is usually chosen to be less than or equal to
the input bit width.

Use dist mem for
coeffients

Store the FIR coefficients in distributed memory (if = 1). Otherwise, BRAMs are used to
hold the coefficients. 0 (not using distributed memory) is default

Latency There's normally no reason to change this unless you're having troubles fitting the
design into the fabric.

Quantization Behavior Specifies the rounding behavior used at the end of each butterfly computation to return
to the number of bits specified above. Rounding is strongly suggested to avoid artifacts.

Bin Width Scaling PFBs give enhanced control over the width of frequency channels. By adjusting this
parameter, you can scale bins to be wider (for values > 1) or narrower (for values < 1).

Page 7 of 20

 FFT_WIDEBAND_REAL
 http://casper.berkeley.edu/wiki/Fft_wideband_real

The FFT_wideband_real block is the most important part of the design to understand. The cool green of the FFT block
hides the complex and confusing FFT butterfly biplex algorithms that are under the hood. You do need to have a
working knowledge of it though, so I recommend reading Chapter 8 and Chapter 12 of Smith's free online DSP guide
(at http://www.dspguide.com/).

Parts of the documentation below are taken from the documentation by Aaron Parsons and Andrew Martens on the
CASPER wiki (at http://casper.berkeley.edu/wik).

 INPUTS/OUTPUTS

sync Like many of the blocks, the FFT needs a heartbeat to keep it sync'd

Shift Sets the shifting schedule through the FFT. Bit 0 specifies the behavior of stage 0,
bit 1 of stage 1, and so on. If a stage is set to shift (with bit = 1), then every sample
is divided by 2 at the output of that stage.

In this design, we've set Shift to 213− 1 − 1, which will shift the data by 1 on every
stage to prevent overflows.

in0
in1
in2
in3

Four inputs for the parallel data streams coming from the ADC, through the
pfb_fir_real filter block, and into here. Just connect them up.

out0
out1

The FFT produces two signals, the real part (out0, cosine wave values) and the
imaginary part (out1, sine wave values). Following the lines you'll see that these
two inputs end up in an “odd” and “even” software register. This is then interleaved
in the spectrometer.py script to form a complete spectrum.

Data is output in normal frequency order, meaning that channel 0 (corresponding to

DC) is output first, followed by channel 1, on up to channel 2N − 1 − 1.

Page 8 of 20

http://www.dspguide.com/

 PARAMETERS

Size of FFT How many points the FFT will have. The number of channels will be half this. We've
selected 212=4096 points, so we'll have a 211=2048 channel filter bank. This should
match up with the pfb_fir block.

Input/output bitwidth The number of bits in each real and imaginary sample as they are carried through
the FFT. Each FFT stage will round numbers back down to this number of bits after
performing a butterfly computation.

This has to match what the pfb_fir is throwing out. The default is 18 so this
shouldn't need to be changed.

Coefficient bitwidth The amount of bits for each coefficient. 18 is default.

Number of
simultaneous inputs

The number of parallel time samples which are presented to the FFT core each
clock. We have 22=4 parallel data streams, so this should be set to 2.

Quantization Behavior Specifies the rounding behavior used at the end of each butterfly computation to
return to the number of bits specified above. Here we'll just use Round (unbiased:
Even Values).

Overflow Behavior Indicates the behavior of the FFT core when the value of a sample exceeds what
can be expressed in the specified bit width. Here we're going to use Wrap as
Saturate will not make overflow corruption better behaved.

Add Latency Latency through adders in the FFT. Set this to 2..

Mult Latency Latency through multipliers in the FFT. Set this to 3.

BRAM Latency Latency through BRAM in the FFT. Set this to 2.

Convert Latency through blocks used to reduce bit widths after twiddle and butterfly stages.
Set this to 1.

Architecture Set to Virtex5, the architecture of the FPGA on the ROACH. This changes some of
the internal logic to better optimise for the DSP slices.

Use less This affects if complex multiplications use less multipliers or adders/logic. For
the complex multipliers in the FFT, you can use 4 multipliers and 2 adders, or 3
multipliers and a bunch or adders. So you can trade-off DSP slices for logic or
vice-versa. Set this to Multipliers.

Number of bits above
which to store
stage's coeff's in
BRAM

Determines the threshold at which the twiddle coefficients in a stage are stored
in BRAM. Below this threshold distributed RAM is used. By changing this, you
can bias your design to use more BRAM or more logic. We're going to set this
to 8.

Number of bits above
which to store
stage's delay's in
BRAM

Determines the threshold at which the twiddle coefficients in a stage are stored
in BRAM. Below this threshold distributed RAM is used. Set this to 9.

Multiplier
Specification

Determines how multipliers are implemented in the twiddle function at each
stage. Using behavioral HDL allows adders following the multiplier to be
folded into the DSP48Es in Virtex5 architectures. Other options choose
multiplier cores which allows quicker compile time. If selected, you can enter
an array of values allowing exact specification of how multipliers are
implemented at each stage. Leave this unchecked.

Use DSP48's for
adders

The butterfly operation at each stage consists of two adders and two
subtracters that can be implemented using DSP48 units instead of logic.
Leave this unchecked.

Page 9 of 20

 POWER
 http://casper.berkeley.edu/wiki/Power

The power block computes the power of a complex number. The power block typically has a latency of 5 and will
compute the power of its input by taking the sum of the squares of its real and imaginary components. The power block
is written by Aaron Parsons and online documentation is by Ben Blackman.

In our design, there are two power blocks, which compute the power of the odd and even outputs of the FFT. The output
of the block is 36.34 bits; the next stage of the design re-quantizes this down to a lower bitrate.

PARAMETERS

Parameter Variable Description
Bit Width BitWidth The number of bits in its input.

INPUTS/OUTPUTS

Port Dir Data Type Description

c IN 2*BitWidth Fixed point
A complex number whose higher BitWidth bits are its real part and
lower BitWidth bits are its imaginary part.

power OUT
UFix_(2*BitWidth)_(2*
BitWidth-1)

The computed power of the input complex number.

Page 10 of 20

 QUANT

The quant0 was written by Jason Manley for this tutorial and is not part of the CASPER blockset. The block re-
quantizes from 36.34 bits to 6.5 unsigned bits, in preparation for accumulation by the 32 bit bram_vacc block. This
block also adds gain control, via a software register. The spectrometer.py script sets this gain control. You would not
need to re-quantize if you used a larger vacc block, such as the 64bit one, but it's illustrative to see a simple example of
re-quantization, so it's in the design anyway.

Note that the sync_out port is connected to a block, acc_cntrl, which provides accumulation control.

PARAMETERS

None.

INPUTS/OUTPUTS

Port Description

Sync Input/output for the sync heartbeat pulse.

din0
din1

Data inputs – odd is connected to din0 and even is connected to din1. In our design, data in is
36.34 bits.

dout0
dout1

Data outputs. In this design, the quant0 block requantizes from the 36.34 input to 6.5 bits, so
the output on both of these ports is 6.5 unsigned bits.

Page 11 of 20

 SIMPLE_BRAM_VACC

The simple_bram_vacc block is used in this design for vector accumulation. Vector growth is approximately 28 bits
each second, so if you wanted a really long accumulation (say a few hours), you'd have to use a block such as the
qdr_vacc or dram_vacc. As the name suggests, the simple_bram_vacc is simpler so it is fine for this demo
spectrometer.

The FFT block outputs 1024 cosine values (odd) and 1024 sine values, making 2048 values in total. We have two of
these bram vacc's in the design, one for the odd and one for the even frequency channels. The vector length is thus set
to 1024 on both.

PARAMETERS

Parameter Description

Vector length
The length of the input/output vector. The FFT block produces two streams of 1024
length (odd and even values), so we set this to 1024.

no. output bits As there is bit growth due to accumulation, we need to set this higher than the input
bits. The input is 6.5 from the quant0 block, we have set this to 32 bits. Note: We
could set this to 64 bits and skip the quant block.

INPUTS/OUTPUTS

Port Description

new_acc

A boolean pulse should be sent to this port to signal a new accumulation. We can't directly use
the sync pulse, otherwise this would reset after each spectrum. So, Jason has connected this
to acc_cntrl, a block which allows us to set the accumulation period.

din/dout Data input and output. The output depends on the no. output bits parameter.

Valid The output of this block will only be valid when it has finished accumulating (signalled by a
boolean pulse sent to new_acc). This will output a boolean 1 while the vector is being output,
and 0 otherwise.

Page 12 of 20

 EVEN AND ODD BRAMS

The final blocks, odd and even are shared BRAMs, which we will read out the values of using the spectrometer.py
script.

PARAMETERS

Parameter Description

Output data type Unsigned

Address width

2^(Address width) is the number of 32 bit words of the implemented BRAM. There is
no theoretical maximum for the Virtex 5, but there will be significant timing issues at
bitwidths of 13. QDR or DRAM can be used for larger address spaces. Set this
value to 11 for our design.

Data binary point
The binary point should be set to zero. The data going to the processor will be
converted to a value with this binary point and the output data type.

Initial values This is a test vector for simulation only. We can leave it as is.

Sample rate Set this to 1.

INPUTS/OUTPUTS

Port Description

Addr Address to be written to with the value of data_in, on that clock, if write enable is high.

data_in The data input

We Write enable port

data_out
Writing the data to a register. This is simply terminated in the design, as the data has finally
reached its final form and destination.

Page 13 of 20

 CONTROL REGISTERS

There are a few control registers, led blinkers and snap block dotted around the design too:

1. cnt_rst: Counter reset control. Pulse this high to reset all counters back to
zero.

2. acc_len: Sets the accumulation length. Have a look in spectrometer.py for
usage.

3. sync_cnt: Sync pulse counter. Counts the number of sync pulses issued.
Can be used to figure out board uptime and confirm that your design is
being clocked correctly.

4. acc_cnt: Accumulation counter. Keeps track of how many accumulations
have been done.

5. led0_sync: In the spirit of Kanye (feat. Dwele), we have some flashing
lights. I would argue that ours are the best flashing lights of all time, but
what do I know4? Back on topic: the led0_sync light flashes each time a
sync pulse is generated. It lets you know your ROACH is alive.

6. led1_new_acc: This lights up led1 each time a new accumulation is
triggered.

7. led2_acc_clip: This lights up led2 whenever clipping is detected.

There are also some snap blocks, which capture data from the FPGA fabric and makes it accessible to the Power PC.
This tutorial doesn't go into these blocks (in its current revision, at least), but if you have the inclination, have a look at
their wiki entry at:

http://casper.berkeley.edu/wiki/Snap

In this design, the snap blocks are placed such that they can give useful debugging information. You can probe these
through KATCP, as done in tutorial one, if interested.

If you've made it to here, congratulations, go and get yourself a cup of tea and a biscuit, then come back for part two,
which explains the second part of the tutorial – actually getting the spectrometer running, and having a look at some
spectra.

4 Hope you appreciate the joke more than Taylor Swift

Page 14 of 20

http://casper.berkeley.edu/wiki/Snap

PART TWO

Configuration and Control

Page 15 of 20

7 Hardware configuration

The tutorial comes with a pre-compiled bof file “File3b” at “Location 4 ” , which is generated from
the tutorial you just went through.

You don't need to telnet in to the ROACH; all communication and configuration will be done by the
python control script.

Copy the bof file to be programed which is compiled by you , in the directory “Location2” after
changing the permissions of the file.

 eg. for the bof file
 File 3 b in the area Location7 / Location 10 /
 $ chmod a+x Location7 / Location 10 / File 3 b
 $ cp Location7 / Location 10 / File 3 b Location2 /

The tutorial comes with a python file called “File3d”. To use this, you need to have installed a few
python libraries. If you haven't already, go through the instructions on

http://casper.berkeley.edu/wiki/Corr

I'd recommend installing all the packages, and documenting any trouble you have on the discussion
page of the wiki. Also, iPython is used later on in this tutorial.

Next, you need to set up your ROACH. Switch it on, making sure that:

• You have your ADC in ZDOK0, which is
the one nearest to the power supply.

• You have your clock source connected
to clk_i on the ADC, which is the second on the
right. It should be generating an 800MHz sine
wave with 0dBm power.

If set up correctly, it should look like the photo on the right (sans the 10GbE cable).

8 The python script “File3d”

Once you've got that done, it's time to run the script. First, check that you've connected the ADC to
ZDOK0, and that the clock source is connected to clk_i of the ADC.

Now, if you're in linux, browse to where the “File3d” file is in a terminal and at the prompt type

./File3d <roach IP or hostname> <boffile name>

replacing '<roach IP or hostname>' with the IP address of your ROACH and boffile name with your
boffile “File3b”.

eg. $ Location 5 / File3d roach030172 File3b

#Enter the corresponding Location/File names and roach name/IP.

Page 16 of 20

http://casper.berkeley.edu/wiki/Corr

You should see a spectrum like this:

In the plot, there should be a fixed DC offset spike; and if you're putting in a tone, you should also
see a spike at the correct input frequency. If you'd like to take a closer look, click the icon that is
below your plot and third from the right, then select a section you'd like to zoom in to.

Now you've seen the python script running, let's go under the hood and have a look at how the
FPGA is programmed and how data is interrogated. To stop the python script running, go back to
the terminal and press ctrl + c a few times.

9 iPython walkthrough
The spectrometer.py script has quite a few lines of code, which you might find daunting at first. Fear
not though, it's all pretty easy. To whet your whistle, let's start off by operating the spectrometer
through iPython. Open up a terminal and type:

ipython --pylab

and press enter. You'll be transported into the magical world of iPython, where we can do our
scripting line by line, similar to MATLAB. Our first command will be to import the python packages
we're going to use:

import corr,time,numpy,struct,sys,logging,pylab

Next, we set a few variables:

katcp_port = 7147
roach ='enter IP address or hostname here' eg.roach = 'roach030172'
timeout = 10

Which we can then use in FpgaClient() such that we can connect to the ROACH and issue
commands to the FPGA:

fpga = corr.katcp_wrapper.FpgaClient(roach,katcp_port, timeout)

We now have an fpga object to play around with. To check if you managed to connect to your
ROACH, type. We will true if connected :

Page 17 of 20

fpga.is_connected()

Let's set the bitstream running using the progdev() command. We will get 'ok' after programming
FPGA :

fpga.progdev('File3b')

Now we need to configure the accumulation length and gain by writing values to their registers. For
two seconds and maximum gain: accumulation length, 2*(2^28)/2048, or just under 2 seconds:

fpga.write_int('acc_len',2*(2**28)/2048)
fpga.write_int('gain',0xffffffff)

Finally, we reset the counters:

fpga.write_int('cnt_rst',1)
fpga.write_int('cnt_rst',0)

To read out the integration number, we use fpga.read_uint():

fpga.read_uint('acc_cnt')

Do this a few times, waiting a few seconds in between. You should be able to see this slowly rising.
Now we're ready to plot a spectrum. We want to grab the even and odd registers of our PFB:

a_0=struct.unpack('>1024l',fpga.read('even',1024*4,0))
a_1=struct.unpack('>1024l',fpga.read('odd',1024*4,0))

These need to be interleaved, so we can plot the spectrum. We can use a for loop to do this:

interleave_a=[]

for i in range(1024):
interleave_a.append(a_0[i])
interleave_a.append(a_1[i])

Press Enter key two times to comeout of this for loop in ipython.
This gives us a 2048 channel spectrum. Finally, we can plot the spectrum using pyLab:

pylab.figure(num=1,figsize=(10,10))
pylab.plot(interleave_a)
pylab.title('Integration number')
pylab.ylabel('Power (arbitrary units)')
pylab.grid()
pylab.xlabel('Channel')
pylab.xlim(0,2048)
pylab.show()

Voila! You have successfully controlled the ROACH spectrometer using python, and plotted a
spectrum. Bravo! You should now have enough of an idea of what's going on to tackle the python
script. Type exit() to quit ipython.

Page 18 of 20

10 The python script “File3d” notes

Now you're ready to have a closer look at the “File3d” script. Open it with your favorite editor.
Again, line by line is the only way to fully understand it, but to give you a head start, here's a few
notes:

Connecting to the ROACH

To make a connection to the ROACH, we need to know what port to connect to, and the IP address
or hostname of our ROACH. The connection is made on line 98:

88. fpga = corr.katcp_wrapper.FpgaClient(...)

The katcp_port variable is set on line 16, and the roach variable is passed to the script at the
terminal (remember that you typed python “File3d” roachname). We can check if the connection
worked by using fpga.is_connected(), which returns true or false:

101. if fpga.is_connected():

The next step is to get the right bitstream programmed onto the FPGA fabric. The bitstream is set on
line 15:

18. bitstream = 'File3b'

Then the progdev command is issued on line 101:

 110. fpga.progdev(bitstream)

Passing variables to the script

Starting from line 66, you'll see the following code:

from optparse import OptionParser

p = OptionParser()
p.set_usage('“File3d” <ROACH_HOSTNAME_or_IP> [options]')
p.set_description(__doc__)

p.add_option('-l','—acc_len',dest='acc_len',
type='int', default=2*(2**28)/2048,
help='Set the number of vectors to accumulate between dumps. default is
2*(2^28)/2048, or just under 2 seconds.')

p.add_option('-g', '--gain', dest='gain',
type='int',default=0xffffffff,
help='Set the digital gain (6bit quantisation scalar). Default is
0xffffffff (max), good for wideband noise. Set lower for CW tones.')

p.add_option('-s', '--skip', dest='skip', action='store_true',
help='Skip reprogramming the FPGA and configuring EQ.')

opts, args = p.parse_args(sys.argv[1:])

Page 19 of 20

 if args==[]:

 print 'Please specify a ROACH board. Run with the -h flag to see
all options.\nExiting.'

 exit()
 else:
 roach = args[0]

What this code does is set up some defaults parameters which we can pass to the script from the
command line. If the flags aren't present, it will default to the values set here.

11 Conclusion

If you have followed this tutorial faithfully, you should now know:

• What a spectrometer is and what the important parameters for astronomy are.

• Which CASPER blocks you might want to use to make a spectrometer, and how to
connect them up in Simulink.

• How to connect to and control a ROACH spectrometer using python scripting.

In the “Wideband poco” tutorial, you'll be looking at a wideband 'FX' correlator design on the
ROACH. You'll see quite a few of the blocks you were introduced to today reused, as the 'F' of a
'FX' correlator is essentially a spectrometer. Alternatively, tutorial “Wideband GPU/Zooming
spectrometer“ will take you through how to build a “million channel spectrometer”, along with a
few simulink tricks.

Page 20 of 20

	1. The Hardware and software required for this tutorial.
	2 Introduction
	3 Spectrometer Basics
	4 Setup
	5 Simulink Design Overview
	 ADC
 http://casper.berkeley.edu/wiki/Adc
	 INPUTS
	 OUTPUTS

	 PFB_FIR_REAL
 http://casper.berkeley.edu/wiki/Pfb_fir_real
	 INPUTS/OUTPUTS
	 PARAMETERS

	 FFT_WIDEBAND_REAL
 http://casper.berkeley.edu/wiki/Fft_wideband_real
	 INPUTS/OUTPUTS
	 PARAMETERS

	 POWER
 http://casper.berkeley.edu/wiki/Power
	PARAMETERS
	INPUTS/OUTPUTS

	 QUANT

	PARAMETERS
	INPUTS/OUTPUTS

	 SIMPLE_BRAM_VACC

	PARAMETERS
	INPUTS/OUTPUTS

	 EVEN AND ODD BRAMS

	PARAMETERS
	INPUTS/OUTPUTS

	 CONTROL REGISTERS

	7 Hardware configuration
	8 The python script “File3d”
	9 iPython walkthrough
	10 The python script “File3d” notes
	11 Conclusion

