
 CASPER Workshop
Tutorial 2: 10GbE Interface

Dev. By : Jason Manley and Andrew Martens

Doc. By : Irappa M. Halagali gmrt/ncra/tifr

Expected completion time: 2hrs

Contents:

1. The Hardware and Software required for this tutorial
2. Introduction
3. Background
4. Setup
5. Creating your design
6. Control
7. Receiving data on the PC using CX4 cable
8. Looking at the data received
9. Conclusion

1 The Hardware and Software required for this tutorial.

1. PC : Dell Intel(R) Core(TM) i3 CPU 530 @ 2.93GHz width 64 bit & 4GB RAM
2. OS : Linux 2.6.35-30-generic #54-Ubuntu 10.10 SMP x86_64 GNU/Linux
3. Matlab : 2008a
4. Xilinx : version 11.5
5. Casper : gits_100511
6. corr pack's: corr-0.6.5
7. Python : 2.6
8. minicom : ver 2.4 (compiled on Jun 3 2010)
9. Wireshark : Running on Linux 2.6.35-30-generic, with libpcap version 1.1.1, GnuTLS 2.8.6, Gcrypt 1.4.5.
10. TCPdump : tcpdump-4.1.1
11. GULP : version 2.0, January 2004
12. iperf : version 2.0.4 (7 Apr 2008) pthreads
13. jperf : version 2.0.2

Page 1 of 16

14. ROACH unit : version 1.0 Rev 3 2009 , uboot : uboot-2010-07-15-r3231-dram , Linux Kernel Image : uImage-
jiffy-20091110
15. 10Gbe Myricom card installed in the PC with drivers.

2 Introduction
In this tutorial, you will create a simple Simulink design which uses the ROACH's 10GbE ports to send data at
high speeds to another port. This could just as easily be another ROACH board or a computer with a 10GbE
network interface card. In addition, we will learn to control the design remotely, using a supplied Python library for
KATCP.

3 Background
ROACH boards have four CX-4 ports. There are two 156.25MHz crystals on the board. Each one clocks two
ports, 0 & 1 and 2 & 3. This clock is then multiplied up on the FPGA by a factor of 20. Each port has 4 channels
running in parallel (hence the digit in CX-4). Thus, the speed on the wire is actually 4 x 156.25MHz x 20 =
12.5Gbps.

However, 10GbE uses 8/10 encoding, which means that for every byte sent, 10 bits are actually transmitted. This
is to ensure proper clocking, since the receiver recovers and locks-on to the transmitter's clock and requires
edges in the data. Imagine transmitting a string of 0xFF or 0b11111111... which would otherwise generate a DC
level on the line, now an extra two bits are introduced which includes a zero bit which the receiver can use to
recover the clock and byte endings. See http://en.wikipedia.org/wiki/8b/10b_encoding for more information.
For this reason, we actually get 12.5Gbps * 8/10 = 10Gbps usable datarate.
CASPER's 10GbE Simulink core sends and receives UDP over IPv4 packets. These IP packets are wrapped in
Ethernet frames.
Each Ethernet frame requires a 38 byte header, IPv4 requires another 20 bytes and UDP a further 16. So, for
each packet of data you send, you will incur a cost of at least 74 bytes. I say at least, because the core will zero-
pad some headers to be on a 64-bit boundary. You will thus never achieve 10Gbps of usable throughput. The
best we have managed without loss is ~9.5Gbps. It pays to send larger packets if you are trying to get higher
throughputs.

The maximum payload length of the CASPER 10GbE_v2 core is 8192 bytes (implemented in BRAM) plus
another 512 (implemented in distributed RAM) which is useful for an application header.

These ports (and hence part of the10 GbE cores) run at 156.25MHz, while the interface to your design runs at
the FPGA clock rate (sys_clk, adcX_clk etc). The interface is asynchronous, and buffers are required at the clock
boundary. For this reason, even if you send data between two ROACH boards which are running off the same
hard-wired clock, there will be jitter in the data.

A second consideration is how often you clock values into the core when you try to send data. If your FPGA is
running faster than the core, and you try and clock data in on every clock cycle, the buffers will eventually
overflow. Likewise for receiving, if you send too much data to a board and cannot clock it out of the receive buffer
fast enough, the receive buffers will overflow and you will lose data.

In our design, we are clocking the FPGA at 200MHz, with the cores running at 156.25MHz. We will thus not be
able to clock data into the TX buffer continuously for very long before it overflows. If this doesn't make much
sense to you now, don't worry, it will become clear after you've tried it.

Page 2 of 16

https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/uboot/uboot-2010-07-15-r3231-dram
http://en.wikipedia.org/wiki/8b/10b_encoding
https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/linux/uImage-jiffy-20091110
https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/linux/uImage-jiffy-20091110

4 Setup
The lab at the workshop is pre-configured with the CASPER libraries, Matlab and Xilinx tools. Please refer the file
“LOCATIONSandFILES.pdf” in the home/ Desktop area or L OCATIONSandFILES slides displayed , for the
locations/directories and files information required in the tutorial.Note : The Date and Time portion of the BOF file
name will be different! It depends upon when (Date & Time) you complile your model file !

Note : All the following cable connections and entries in the /etc/* files of the workshop PCs are already done.

1. Connect the Serial port cable between the ROACH board's P2 connector and serial port of the PC (on which
minicom program exists).

2. Connect the Ethernet cable to J25 port of the ROACH board from the PCs eth1 port. /etc/ethers file should
have mac address and corresponding ip address. In the /etc/network/interfaces file , eth1 should be configured.
And in the file /etc/hosts , ip address and corresponding roach board(host) name entry to be done.

3. a. To test the 10Gbe data Transfer and Receive in the loop back mode :
Connect the CX4-10Gbe cable between Port 0 (rightmost bottom if we view the ROACH UNIT from the
backside) to the Port 3 (bottom one , adjacent to J25 connector).
 b. To test the 10Gbe data Transfer and Receive between ROACH unit and PC :
Connect the CX4-10Gbe cable between Port 0 (rightmost bottom if we view the ROACH UNIT from the
backside) to the connector on the 10Gbe Myricom card installed in the PC.

4. Either copy the mdl file “[TUT2_MDL_FILE]” from the the area “[STD_MDL_DIR]” or follow the steps given
below to create the mdl file one similar to the file “[STD_MDL_DIR]/[TUT4_MDL_FILE]” after creating your
own directory at “[USER_DIR]” to save and compile your model file or the bof file is kept in the area
“[FPGA_PROG_BOF_DIR]/[TUT4_BOF_FILE]” to directly program(using the python script explained in
“Control”) the FPGA and look at the results.

5. Start the matlab :
 $ cd [MATLAB_START_DIR]
[MATLAB_START_DIR]$./[MATLAB_START_FILE] &

5 Creating Your Design
In this tutorial, a counter will be transmitted through one CX-4 port and back into another. This will allow a test of
the communications link in terms of performance and reliability. This test can be used to test the link between
boards and the effect of different cable lengths on communications quality.

5.1 Create a new model

Start Matlab and open Simulink (either by typing 'simulink' on the Matlab command line, or by clicking on the
Simulink icon in the taskbar). Create a new model and add the Xilinx System Generator and XSG core config
blocks as before in Tutorial 1.Specify sys_clk_2x (200MHz clock derived from 100MHz onboard clock) as the
clock source in the XSG core config block.

Page 3 of 16

5.2 Add reset logic

A very important piece of logic to consider when designing your system is how, when and what happens during
reset. In this example we shall control our resets via a software register. We shall have two independent resets,
one for the 10Ge cores which shall be used initially, and one to reset the user logic which may be used more often
to restart the user part of the system. Construct reset circuitry as shown below.

5.2.1 Add a software register

Use a software register yellow block from the BEE_XPS System Blockset for the rst block. Rename it to rst.
Configure the I/O direction to be From Processor. Attach a Constant block from the Simulink->Sources section of
the Simulink Library Browser to the input of the software register and make the value 0.

5.2.2 Add Slice blocks

Add two Slice blocks from the Xilinx Blockset. Configure the one to be used to reset the 10Ge core to use the 2nd

least significant bit as shown below.

The Slice block to use the least significant bit is configured in a similar way except that the Offset of bottom bit
should be 0.

Page 4 of 16

Illustration 1: Reset logic

Illustration 2: core_rst setup

5.2.3 Add Goto blocks

Add two Goto blocks from Simulink->Signal Routing. Configure them to have the tags as shown (core_rst and
cnt_rst). These tags will be used by associated From (also found in Simulink->Signal Routing) blocks in other
parts of the design. These help to reduce clutter in your design and are useful for control signals that are routed
to many destinations. They should not be used a lot for data signals as it reduces the ease with which data flow
can be seen through the system.

5.3 Add 10Ge and associated registers for data transmission

We will now add the 10Ge block to transmit a counter at a programmable rate.

5.3.1 Add a 10Ge block for data transmission

Add a ten_GbE_V2 yellow block from the BEE_XPS System Blockset. It will be used to transmit data and we
shall add another later to receive data. Rename it gbe0. Double click on the block to configure it and set it to be
associated with CX-4 port 0. If your application can guarantee that it will be able to use received data straight
away (as our application can), shallow receive buffers can be used to save resources. This optimisation is not
necessary in this case as we will use a small fraction of resources in the FPGA.

5.3.2 Add registers to provide the target IP address and port number

Add two yellow-block software registers to provide the destination IP address and port number for transmission
with the data. Name one dest_ip and the other dest_port. The registers should be configured to receive their
values from the processor. Connect them to the appropriate inputs of the gbe0 10Ge block as shown. A Slice block
is required to use the lower 16 bits of data from the dest_port register. Constant blocks from Simulink->Sources
with 0 values are attached to the simulation inputs of the software registers. The destination port and IP address
are not important in this system as it is a loopback example. Add a From block from Simulink->Signal Routing and
set the tag to use core_rst, this enables one to reset the block.

Page 5 of 16

Illustration 3: 10Ge transmit block configuration

5.4 Create a subsystem to generate a counter to transmit as data

We will now implement logic to generate a counter to transmit as data.

5.5 Construct a subsystem for data generation logic

It is often useful to group related functionality and hide the details. This reduces drawing space and complexity of
the logic on the screen, making it easier to understand what is happening. Simulink allows the creation of
Subsystems to accomplish this.

These can be copied to places where the same functionality is required or even placed in a library for use in
other projects and by other people.

To create a subsystem, one can highlight the logical elements to be encapsulated, then right-click and choose
Create Subsystem from the list of options. You can also simply add a Subsystem block from Simulink->Ports &
Subsystems.

 Subsystems inherit variables from their parent system. Simulink allows one to create a variable whose scope is
only a particular subsystem. To do this, right-click on a subsystem and choose the Create Mask option. The
mask created for that particular subsystem allows one to add parameters that appear when you double-click on
the icon associated with the subsystem.

The mask also allows you to associate an initialisation script with a particular subsystem. This script is called
every time a mask parameter is modified and the Apply button clicked. It is especially useful if the internal
structure of a subsystem must change based on mask parameters. Most of the interesting blocks in the CASPER
library use these initialisation scripts.

Drop a subsystem block into your design and rename it pkt_sim. Then double-click on it to add logic.

Page 6 of 16

Illustration 4: 10Ge transmission block and registers

5.6 Add a counter to generate a certain amount of data

Add a Counter block from Xilinx Blockset->Basic Elements and configure it to be unsigned, free-running, 32-bits,
incrementing by 1 as shown. Add a Logical block, software register and Constant block as shown. In simulation
this circuit will generate a counter from 0 to 49 and then stop counting. This will allow us to generate 50 data
elements before stopping.

5.7 Add a counter to limit the data rate

As mentioned earlier in this tutorial, it is impossible to supply data to the 10Ge transmission block at the full clock
rate. This would mean transmitting a 64-bit word at 200MHz, and the 10Ge standard only supports up to
156.25MHz data transmission. We thus want to generate data in bursts such that the transmission FIFOs do not
overflow. We thus add circuitry to limit the data rate as shown below. The logic that we have added on the left
generates a reset at a fixed period determined by the software register. This will trigger the generation of a new
packet of data as before. In simulation this allows us to limit the data rate to 50/200 * 200MHz = 50MHz. Using
these values in actual hardware would limit the data rate to (50/(8/10*156.25)) = 4Gbps.

Page 7 of 16

Illustration 5: Data count configuration

5.8 Finalise logic including counter to be used as data

We will now finalise the data generation logic as shown below. To save time, use the existing logic provided with
the tutorial. Counter1 in the illustration generates the actual data to be transmitted and the enable register allows
this data stream to the transmitting 10Ge core to be turned off and on. Logic linked to the eof output port provides
an indication to the 10Ge core that the final data word for the frame is being sent. This will trigger the core to
begin transmission of the frame of data using the IP address and port number specified.

To limit verbosity, major concepts and specific blocks of Tutorial 2 will be discussed in the following pages.

Page 8 of 16

Illustration 7: Full data generation logic

Illustration 6: Payload counter and period counter

5.9 Receive blocks and logic

The receive logic is is composed of another 10Ge yellow block with the transmission interface inputs all tied to 0
as no transmission is to be done, however Simulink requires all inputs to be connected. Connecting them to 0
should ensure that during synthesis the transmission logic for this 10Ge block is removed.

5.10 Buffers to capture received and transmitted data

The transmission logic and receive interface of the 10Ge block receiving data are both connected to snap64
blocks (located in CASPER DSP Blockset->scopes) that have been modified to capture status information
associated along with the data. These blocks (snap_gbe0_tx and snap_gbe3_rx) are identical internally. Using
these blocks we can capture data as it is transmitted and compare it to the data we receive.

Snap and snap64 are a standard way of capturing snapshots of data in the CASPER tool-set. A snap block
contains a single shared BRAM allowing capture of 32-bit words while a snap64 contains two shared BRAM
blocks supporting capture of 64-bit data. In this example, bram_oob along with the data path supplying it have
been added to allow the capture of status information associated with the data.

The ctrl register in a snap block allows control of the capture. The least significant bit enables the capture. Writing
a rising edge to this bit primes the snap block for capture. The 2nd least most significant bit allows the the choice
of a trigger source. The trigger can come from an external source or be internal and immediately. The 3 rd most
least significant bit allows you to choose the source of the valid signal associated with the data. This may also be
supplied externally or be immediately enabled.

Page 9 of 16

Illustration 8: Modified snap64

The basic principle of the snap block is that it is primed by the user and then waits for a trigger at which point it
captures a block of data and then waits to be primed again. Once primed the addr output register returns an
address of 0 and will increment as data is written into the BRAMs. Upon completion the addr register will contain
the final address. Reading this value will show that the capture has completed and the results may be extracted
from the shared BRAMs.

5.11 LEDs and status registers

We shall now look at some registers and LEDs to monitor the progress of our data transfer. We shall be able to
check if the link on each 10Ge ports is up, whether transmission is taking place, if our buffers have overflowed
etc via registers.

5.11.1 Transmission registers and LEDs

● gbe0_tx_cnt is attached to a counter that increments when the end-of-frame signal is raised on the input
to the transmitting 10Ge block. It keeps a count of the number of frames transmitted.

● led0_gbe0_pulse_tx is attached to the 16th bit of this counter and will give a visual indication of data
transmission.

● gbe0_linkup is a register that allows us to check if the transmitting 10Ge block is available for data
transfer.

● gbe0_rx is a register that we can poll to see if the transmitting core is receiving any data, which should
not be the case in this design except for house-keeping traffic.

● gbe0_tx can be polled to check for data transmission.
● gbe0_tx_full is a useful register allowing us to see when the FIFOs in the transmitting core are almost

full, indicating that we are close to overflowing our transmission buffers.
● gbe0_tx_over indicates to us that transmission FIFOs have in fact overflowed and we have lost data.
● led1_gbe0_tx_over is a visual indication for the user of overflows in the transmission FIFOs.

5.11.2 Receiving registers and LEDs

● gbe3_linkup is a register that allows one to determine if the receiving 10Ge block is attached to a viable
communications medium.

● gbe3_rx allows monitoring of whether the receiving 10Ge block is receiving data.
● gbe3_tx allows you to check whether the receiving 10Ge is transmitting data. This should be rare and

should only occur during house-keeping operations such as ARP.
● gbe3_tx_full allows you to check whether the transmit FIFOs are almost full.
● gbe3_tx_over reflects whether the the transmission FIFOs hae overflowed.
● led3_gbe3_rx_err is an LED that reflects whether the 10Ge receiving block detected any errors during

frame reception. A pulse extender block ensures that the LED turns on for long enough that a user can
see when errors occur.

● gbe3_rx_frame_err is a register that allows you to check for receive errors via software.
● gbe3_rx_frame_cnt is attached to a counter that counts the number of frames received by the receiving

10Ge block.
● led2_gbe3_pulse_rx is an LED that gives a visual indication of the rate of frame reception in a similar

way to led_gbe0_pulse_tx.

Page 10 of 16

5.12 Compilation

By giving bee_xps command in the matlab window , we will get a pop-up. Make sure the file displayed in
the pop-up is correct and then press RUN to start the compilation. After compilation , it creates a directory named
after the model file name without the .mdl extension. There is a sub directory named bit_files. In this bit_files
directory there are .bit and .bof file. We need the .bof file to program the FPGA.
You need to save this .bof file at location [FPGA_PROG_BOF_DIR] .

Compiling this design takes approximately 35 minutes. A pre-compiled binary (.bof file)
“[2_ _]TUT BOF FILE ” is made available to save time. This is already present on the ROACHs' filesystem

area “[_ _ _]FPGA PROG BOF DIR ” as “[2_ _]TUT BOF FILE ”.

6 Control
In this next section we shall run tests using our compiled design. We shall learn how the 10Ge interface is
managed via tgtap processes. We shall learn about the katcp python library that provides routines to access the
ROACH board via the katcp server.

6.1 Recap of lessons from Tutorial 1

You should remember from Tutorial 1 that the end of the compilation process for our gateware produces a .bof
file. This file can be executed on the ROACH like any other Linux executable by the custom BORPH-enabled
kernel running on the PPC. Registers, shared BRAMs etc are availble for reading and writing as files in the /proc
filesystem.

A special telnet-like server called the 'katcp server' provides a simple interface to the outside world. You can
telnet to port 7147 on your ROACH and give it commands in the KATCP protocol (try ?help for a list of available
commands). This interface allows you to list available .bof files (via ?listbof) execute a .bof file (via ?progdev
<filename>), list available registers, memory regions etc for access (via ?listdev), and write and read from these
(via ?wordwrite <offset> <value> and ?wordread <offset> <size>).

6.2 Introduction to Python library for use with KATCP server

6.2.1 Getting the required packages:

These are pre-installed on the server in the workshop and you do not need to do any further configuration.
Python and C APIs are available for connecting to KATCP servers. A further Python wrapper is available for
simplifying communications with the KATCP server on ROACH. The KATCP package is available from the
Python Package Index (PyPI) here: http://pypi.python.org/pypi/katcp and the wrapper is bundled in the CASPER
Packetised Correlator control package, corr, found in CASPER SVN here:
http://casper.berkeley.edu/svn/trunk/projects/packetized_correlator/corr-0.4.0/

6.3 Testing our design using the provided demonstration python script.

 The transmission and reception of the data can be tested using
 a. loopback between port 0 (rightmost bottom if viewed from the backside of the ROACH board)
 for transmitting and port 3 (bottom one adjacent to J25 connector) for receiving the data over
 ROACH board using CX 4 cable or
 b. Connecting the cable between port 0 of ROACH board and 10Gbe connector on the Myricom
 card installed on the PC for testing the data transfer from ROACH unit to the PC.
 c. Copy the bof file to be programed which is compiled by you to the directory [FPGA_PROG_BOF_DIR]

 after changing the permissions of the file.

 eg. for the bof file [TUT2_BOF_FILE] in the area [STD_BOF_DIR]

Page 11 of 16

http://casper.berkeley.edu/svn/trunk/projects/packetized_correlator/corr-0.4.0/
http://pypi.python.org/pypi/katcp

 $ chmod a+x [STD_BOF_DIR]/[TUT2_BOF_FILE]
 $ cp [STD_BOF_DIR]/[TUT2_BOF_FILE] [FPGA_PROG_BOF_DIR]

Get the help for using the demonstration python script, “[TUT2_PYSCRIPT_FILE]” on the workshop PC , by
the command ;
$ [STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] -help
Usage: [TUT2_PYSCRIPT_FILE] <ROACH_HOSTNAME_or_IP> [options]
This script demonstrates programming an FPGA, configuring 10GbE cores and
checking transmitted and received data using the Python KATCP library along
with the katcp_wrapper distributed in the corr package. Designed for use with
TUT3 at the 2009 CASPER workshop. Author: Jason Manley, August 2009.

Options:
 -h, --help show this help message and exit
 -p, --plot Plot the TX and RX counters. Needs matplotlib/pylab.
 -a, --arp Print the ARP table and other interesting bits.

6.4 Testing the tutorial using the Loopback mode.

To run the demonstration script to program the FPGA and get the plot of the Tx & Rx data is ;

[STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] <roach number> <options> -b <BOF file>
[STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] <roach number> -p -b <BOF file>

This script programs the FPGA with the the bof file name followed by the option b or the bof file written in
the line number 29 of the demonstration script (boffile = '[TUT2_PYSCRIPT_FILE]'). The option p , plots
the Tx & Rxd data. eg.
$ [STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] roach030172 -p -b [TUT2_BOF_FILE]

#Enter the corresponding Location/File names and roach name/IP.

 You should be presented with a crude figure containing two curves as follows:

Page 12 of 16

The top curve represents the counter that you transmitted. The lower curve represents the contents of the first
2048 datawords received. Seeing as how you used a loopback cable, we expect these to be the same! If not, call
a CASPERite over to help you debug.

6.5 What's going on behind the scenes?

Execute the script [TUT2_PYSCRIPT_FILE] again. This time with the -a flag. This will suppress all the output
lines decoding the snap block contents, allowing you to see the initilisation process. You should see something
like this:

[STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] <roach number> -a -b <BOF file>
eg.
[STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] roach030172 -a -b [TUT2_BOF_FILE]

#Enter the corresponding Location/File names and roach name/IP.
Connecting to server roach020110 on port 7147... ok

Programming FPGA... ok

Port 0 linkup: True
Port 3 linkup: True

Configuring receiver core... done
Configuring transmitter core... done

Setting-up packet source... done
Setting-up destination addresses... done

Resetting cores and counters... done
Sent 0 packets already.
Received 0 packets already.

Triggering snap captures... done
Enabling output... done
Reading 2048 values from bram snap_gbe0_tx_bram_msb... ok
Reading 2048 values from bram snap_gbe0_tx_bram_lsb... ok
Reading 2048 values from bram snap_gbe0_tx_bram_oob... ok
Reading 2048 values from bram snap_gbe3_rx_bram_msb... ok
Reading 2048 values from bram snap_gbe3_rx_bram_lsb... ok
Reading 2048 values from bram snap_gbe3_rx_bram_oob... ok
Unpacking TX packet stream...
Unpacking RX packet stream...

The script has some Python specific stuff where it defines some variables, the command-line options and some
initialisation stuff. As part of this, it will establish a connection to your ROACH of choice using KATCP.
Let's try to replicate some of this script's functions manually. Start interactive python by running

ipython

Now import the correlator control library. This will automatically pull-in the KATCP library and any other required
communications libraries.

import corr

Page 13 of 16

6.5.1 Connecting to the board

To connect to the roach board, we define a new object. Let's call it fpga. The wrapper's fpgaclient initiator
requires two arguments, the IP address or hostname of the roach board, and the KATCP port. KATCP defaults to
port 7147.

fpga=corr.katcp_wrapper.FpgaClient('roach030172',7147) #Change the roach number!
The first thing we do is configure the FPGA. This happens on line 134 of the script.

fpga.progdev(boffile)

6.5.2 Reading from software registers

Then we check to make sure that there is actually a cable plugged in, else it's pointless continuing. The 10GbE
cores require some time to initialise and establish a link. So we sleep for 4 seconds to allow it to settle. Then we
read our two software registers, gbe0_linkup and gbe3_linkup. These should both read 1.

Reading and writing registers is easy with the python wrapper. It automatically packs and unpacks the binary
data for you. There are a few functions available. For the 32-bit software registers, use
read_int and read_uint to unpack signed and unsigned numbers respectively. Since these boolean numbers are
only ever zero or one, it makes no difference which function you use. Let's try
In [3]: fpga.read_uint('gbe0_linkup')
Out[3]: 1

6.5.3 Writing to software registers

This is very similar to reading from registers. Python will automatically figure out if you have a negative number
that you need a signed number, and otherwise assumes an unsigned number. For example, to set the software
register that configures the destination UDP port:
fpga.write_int('dest_port',60000)

6.5.4 Configuring the 10GbE cores

There is a special KATCP command to start the 10GbE userspace tap driver on ROACH.

The call is as follows: fpga.tap_start(device_name, mac, ip, port). The device name is the name of your core as
defined in Simulink. The MAC address is a 48-bit integer. Unless you have purchased a MAC address, we
recommend you use a MAC address reserved for private networks (02:xx:xx:xx:xx:xx).
The IP address is the integer representation of the 32-bit address. The port defines the fabric UDP port. Any data
received by the core not destined for this port will be redirected to the PPC for processing. This is how ARP and
pings are handled (ie not by the FPGA fabric itself). If you disable the CPU interface by un-checking the boxes in
the Simulink mask, obviously you will lose this functionality.

If you run the script [TUT2_PYSCRIPT_FILE] with the -a command-line switch, it will decode the 10GbE
core's ARP table so that you can see how it has been configured and if it has correctly discovered other nodes on
the network.

===============================
10GbE Transmitter core details:
===============================
-----------------------s
GBE0 Configuration...
My MAC: 02 02 0A 00 00 14
Gateway: 0 0 0 20
This IP: 10 0 0 20
Gateware Port: 60000

Page 14 of 16

Fabric interface is currently: Enabled
XAUI Status: 7E

Lane sync 0: 1
Lane sync 1: 1
Lane sync 2: 1
Lane sync 3: 1
Chan bond : 1

XAUI PHY config:
RX_eq_mix: 0
RX_eq_pol: 0
TX_pre-emph: 0
TX_diff_ctrl: 4

ARP Table:
IP: 10. 0. 0. 0: MAC: FF FF FF FF FF FF
IP: 10. 0. 0. 1: MAC: FF FF FF FF FF FF
IP: 10. 0. 0. 2: MAC: FF FF FF FF FF FF

6.5.5 Reading and writing RAM

In much the same way as you would read and write registers, there is a function to read or write generic blocks of
memory. Unsurprisingly, they are called read and write. The write function will automatically verify that the writes
happened. There are also a blindread and blindwrite functions, which do not perform this verification which
means you can obtain higher performance.

For example, to read one of the brams in the snap blocks, you could do
fpga.read(bram_name,tx_size)

Where tx_size is in bytes.

Python returns binary data in a string, so you need to unpack it into integers, floats, characters etc as required.
There is a library called struct to do this. Do an import struct in iPython and then you can do packing or
unpacking of binary data. There is onboard documentation, try print struct.__doc__.

For example, to unpack a big-endian 32-bit unsigned integer, we could do:
struct.unpack('>L',string_to_unpack[start_index:index_end_of_four_bytes])

6.5.6 Other notes

• iPython includes tab-completion. In case you forget which function to use, try typing
library_name.<tab><tab>

• There is also onboard help. Try typing library_name.function?
• Many libraries have onboard documentation stored in the string library_name.__doc__
• KATCP in Python supports asynchronous communications. This means you can send a command, register a

callback for the response and continue to issue new commands even before you receive the response. You
can achieve much greater speeds this way. The Python wrapper in the corr package does not currently make
use of this and all calls are blocking. Feel free to use the lower layers to implement this yourself if you need
it!

Page 15 of 16

7 Receiving data on the PC using CX 4 cable.
 Now disconnect the CX4 cable's end connected to the port 3 of the ROACH board and connect it
 to the connector of the 10Gbe Myricom card in the PC. Now run the following command.
 [STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] <roach number> -a -b <BOF file> eg.

 [STD_PYSCRIPT_DIR]/[TUT2_PYSCRIPT_FILE] roach030172 -a -b [2_ _]TUT BOF FILE

#Enter the corresponding Location/File names and roach name/IP.
 Note : if you run the above command with -p option the plot will appear without any data in the lower half.

 Because no data received in the port 3 , which has been diverted to PC through 10Gbe card.

8 Looking at the data received.

8.1 using WIRESHARK

root@$ su
root@[_]USER DIR $ sudo wireshark &

should be root then only it shows all ports! Capture --> Options # Select eth2(10Gbe card).
Select “Capture packets in promiscuous mode and enter Stop Capture after XXX (eg 10000) packets.
Press start button to start acquiring the packets from eth2.
File--> Quit--> quit without saving (or save the data in your directory if required).

8.2 using TCPDUMP

root@[_]USER DIR $ tcpdump -i eth2 -c 2048 -w [_]HOME DIR /tcpdump_2048.dat

tcpdump: WARNING: eth2: no IPv4 address assigned
tcpdump: listening on eth2, link-type EN10MB (Ethernet), capture size 65535 bytes
2048 packets captured 2053 packets received by filter 0 packets dropped by kernel
root@$:/data#
To dump the data from eth2 of counts 2048 and write in the home directory (permission problem in /data area).
 To move the file to working area :

 root@$ mv [_]HOME DIR /tcpdump_2048.dat [_]USER DIR

8.3 using GULP

root@[_]GULP DIR $ vim gulp.c # change int num_packets = 1000;

root@[_]GULP DIR $ make

root@[_]GULP DIR $./gulp -i eth2 > gulp_1k.dat

To look at the acquired data
 root@[_]GULP DIR $ od -Ad -t d1 -w8 gulp_1k.dat | more # press q to quit.

9 Conclusion :

we have completed the tuturial 2 and got the experience to acquire the data to PC.

Page 16 of 16

	1 The Hardware and Software required for this tutorial.
	2 Introduction
	3 Background
	4 Setup
	5 Creating Your Design
	5.1 Create a new model
	5.2 Add reset logic
	5.2.1 Add a software register
	5.2.2 Add Slice blocks
	5.2.3 Add Goto blocks

	5.3 Add 10Ge and associated registers for data transmission
	5.3.1 Add a 10Ge block for data transmission
	5.3.2 Add registers to provide the target IP address and port number

	5.4 Create a subsystem to generate a counter to transmit as data
	5.5 Construct a subsystem for data generation logic
	5.6 Add a counter to generate a certain amount of data
	5.7 Add a counter to limit the data rate
	5.8 Finalise logic including counter to be used as data
	5.9 Receive blocks and logic
	5.10 Buffers to capture received and transmitted data
	5.11 LEDs and status registers
	5.11.1 Transmission registers and LEDs
	5.11.2 Receiving registers and LEDs

	5.12 Compilation

	6 Control
	6.1 Recap of lessons from Tutorial 1
	6.2 Introduction to Python library for use with KATCP server
	6.2.1 Getting the required packages:

	6.3 Testing our design using the provided demonstration python script.
	6.4 Testing the tutorial using the Loopback mode.
	6.5 What's going on behind the scenes?
	6.5.1 Connecting to the board
	6.5.2 Reading from software registers
	6.5.3 Writing to software registers
	6.5.4 Configuring the 10GbE cores
	6.5.5 Reading and writing RAM
	6.5.6 Other notes

	7 Receiving data on the PC using CX 4 cable.
	8 Looking at the data received.
	8.1 using WIRESHARK
	8.2 using TCPDUMP
	8.3 using GULP

