
CASPER Workshop
Tutorial 1 : Introduction to Simulink

Dev. By : M. Wagner, J. Manley and W. New

Doc. By : Irappa M. Halagali GMRT/NCRA/TIFR

Expected completion time: 1 hr

 Modified from Mark Wagner's original ROACH tutorial at casper.berkeley.edu/wiki/Roach_Tutorial.

Contents :

1. The Hardware and software required for this tutorial.
2. The view of final design.
3. Introduction
4. Setup
5. Creating your design
6. Simulating your design
7. Compiling your design
8. Programming the FPGA using BORPH
9. Interacting with your design using BORPH
10. Programming the FPGA using KATCP
11. Interacting with your design using KATCP
12. Conclusion

1 The Hardware and Software required for this tutorial.

1. PC : Dell Intel(R) Core(TM) i3 CPU 530 @ 2.93GHz width 64 bit & 4GB RAM
2. OS : Linux 2.6.35-30-generic #54-Ubuntu 10.10 SMP x86_64 GNU/Linux
3. Matlab : 2008a
4. Xilinx : version 11.5
5. Casper : gits_100511
6. minicom : version 2.4 (compiled on Jun 3 2010)
7. ROACH unit : version 1.0 Rev 3 2009 , uboot : uboot-2010-07-15-r3231-dram , Linux Kernel Image :
uImage-jiffy-20091110

Page 1 of 24

https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/uboot/uboot-2010-07-15-r3231-dram
https://casper.berkeley.edu/svn/trunk/roach/sw/binaries/linux/uImage-jiffy-20091110

2 The final view of the design

3 Introduction
In this tutorial, you will create a simple Simulink design using both standard Xilinx system generator
blockset, as well as library blocks specific to ROACH. At the end of this tutorial, you will have a
BORPH executable file (a BOF file) and you will know how to interact with your running hardware
design using BORPH.

4 Setup
The lab at the workshop is preconfigured with the CASPER libraries, Matlab and Xilinx tools. Please
refer the file “LOCATIONSandFILES.pd f ” in the home/ Desktop area or L OCATIONSandFILES
slides displayed , for the locations/directories and files information required in the tutorial. Note :
The Date and Time portion of the BOF file name will be different ! It depends upon when (Date &
Time) you complile your model file !

Note : All the following cable connections and entries in the /etc/* files of the workshop PCs are already done.
1. Connect the Serial port cable between the ROACH board's P2 connector and serial port of the PC (on which
minicom program exists).
2. Connect the Ethernet cable to J25 port of the ROACH board from the PCs eth1 port. /etc/ethers file should
have mac address and corresponding ip address. In the /etc/network/interfaces file , eth1 should be configured.
And in the file /etc/hosts , ip address and corresponding roach board (host) name entry to be done.
3. Create your own directory at “[MATLAB_START_DIR]” , to save and compile your model
file.
4. Start the matlab :

$ cd [MATLAB_START_DIR]
[MATLAB_START_DIR]$./[MATLAB_START_FILE] &

Page 2 of 24

5 Creating Your Design

5.1 Create a New Model:

Start Matlab and open Simulink (either by typing simulink on the Matlab command line, or by click in
the Simulink icon in the taskbar).

Create a new model:

5.2 Add Xilinx System Generator and XSG core config blocks:

Add a System generator block from the Xilinx library by locating the Xilinx Blockset library's Basic
Elements subsection and dragging a System Generator token onto your new file. Do not configure it
directly, but rather add an XSG core config from the BEE XPS System Blockset library to do this for
you:

Page 3 of 24

All hardware-related blocks are yellow and can be found in the BEE_XPS library. This library
contains all the board-specific components colloquially called Yellow Blocks.
DSP related blocks are found in the CASPER DSP library and have other colours. Tutorial 3 will
introduce you to these blocks.

Double click on the XSG core config block that you just added. Set it for ROACH: SX95t with
sys_clk as the clock source. sys_clk is an onboard 100MHz crystal.
Leave everything else defaults and click OK.

Clocking options include:
•sys_clk: This is an onboard 100MHz crystal which is connected to the FPGA.
•sys_clk2x: This is the same sys_clk souce (100MHz onboard crystal), PLL'd up to 200MHz using a
Digital Clock Manager (DCM) in the FPGA.
•arb_clk: Arbitrary clock using 100MHz onboard crystal with DCM on FPGA to produce any
frequency (rounded to nearest available integer n/m in accordance with DCM abilities).
•aux_clk (usr_clk on older platforms): SMA input to board. PLL'd versions of these clocks are also
available.
•adcX_clk: For use in conjuction with ADC boards, clock the FPGA off the ADC. For iADC and
KATADC, this is 1/4 of sampling rate (ADCs demux internally). You need to use one of these clocks
if you are using an ADC.

This will go off and configure the System Generator block which you previously added.
You need to add these two blocks for all CASPER designs.

5.3 Flashing LED

To demonstrate the basic use of hardware interfaces, we will make an LED flash. With the FPGA
running at 100MHz, the most significant bit (msb) of a 27 bit counter will toggle every 0.745 seconds.
We can output this bit to an LED on ROACH. ROACH has four green LEDs. We will now connect a
counter to the first one.

Page 4 of 24

5.3.1 Add a counter

Add a counter to your design by navigating to Xilinx Blockset -> Basic Elements -> Counter and
dragging it onto your model.

Double-click it and set it for free running, 27 bits, unsigned.

Page 5 of 24

5.3.2 Add a slice block to select out the msb

We now need to select the most significant bit of the counter. We do this using a slice block, which
Xilinx provides. Xilinx Blockset -> Basic Elements -> Slice.

Double-click on the newly added slice block. There are multiple ways to select which bit(s) you want.
In this case, I find it simplest to index from the upper end and select the first bit. If you wanted the
lsb, you could also index from the lsb,. You can either select the width and offset, or two bit locations.

Set it for 1 bit wide with offset from top bit at zero.

Page 6 of 24

5.3.3 Add a GPIO block

(BEE_XPS library -> gpio).

Set it to use ROACH's LED bank as output, GPIO bit index 0 (the first LED).

Page 7 of 24

5.3.4 Add a terminator

To prevent warnings about unconnected outputs, terminate all unused outputs using a Terminator:

Note that all blocks from the "Simulink" library (usually white), will not be compiled into hardware.
They are present for simulation only and expect continuous signals, not discreet.

Only Xilinx blocks (they are blue with Xilinx logo) will be compiled to hardware.

For this reason, you need to use gateway blocks whenever connecting a Simulink-provided block
(like a scope or constant) for simulations. Some of the CASPER blocks (like the GPIO block) do this
for you with "sim_in" and "sim_out". We will see later how to use a 'scope to monitor these lines.

5.3.5 Connect your design

It is a good idea to rename your blocks to something more sensible, like counter_led instead of just
counter. Do this simply by double-clicking on the name of the block and editing the text
appropriately.

It is a good time to save this new design. There are some Matlab limitations you should be aware-of:

Do not use spaces in your filenames, or anywhere in the file path as it will break the toolflow.

Page 8 of 24

Total path length cannot be more than 64 characters. By “path”, I am refering to not only the file
path, but also the path to any block within your design. For example, if you save this file to
c:\projects\myfile.mdl, the longest Matlab-indexed path would be c:\projects\myfile.mdl\counter_led.
While this is quite short, but there can be additional blocks hidden underneath some of your top level
blocks. This is the case with GPIO, for example. This will become clearer later when we
demonstrate the use of SubSystems. For now, try to keep your names short.

Please save your design in your home directory.under /projects/<YOUR_INITIALS>_tut1.mdl.

5.3.6 Software control

To demonstrate the use of software registers and control of the FPGA through the PPC, we will add
a controllable counter to the above design. The counter can be started and stopped from software
and also reset. We will be able to monitor the counter's current value too.
By the end of this section, you will create a system that looks like this:

5.3.7 Add the software registers

We need two software registers. One to control the counter, and a second one to read its current
value. From the BEE_XPS System Blockset library, drag two Software Registers onto your design.

Set the I/O direction to From Processor on the first one to enable dataflow from PowerPC to the
FPGA fabric. Set it to To Processor on the second one.

Page 9 of 24

Note the field Data bitwidth is greyed out with a value 32. This is because all software registers have
a fixed data bitwidth of 32 bits.

Rename the registers to something sensible, as these names are mapped to filenames in the PPC
for controlling the design. Avoid using spaces, slashes and other funny characters in these names
(spaces automatically get remapped to underscores anyway, but should be avoided for clarity). I
suggest counter_ctrl and counter_value, to represent the control and output registers respectively.

Also note that the software registers have sim_in and sim_out ports. The input port provides a
means of simulating this register's value (as would be set by the PPC) using the sim_in line. The
output port provides a means to simulate this register's current FPGA-assigned value.

For now, set the sim_in port to constant one using a Simulink-type constant. This will enable the
counter during simulations.

Page 10 of 24

During simulation, we can monitor the counter's value using a scope:

Page 11 of 24

5.3.8 Add the counter

You can do this either by copying your existing counter block (copy-paste, or ctrl-click-drag-drop) or
by placing a new one from the library.

Configure it with a reset and enable port as follows:

5.3.9 Add the slice blocks

Now we need some way to control the enable and reset ports of the counter. We could do this using
two separate software registers, but this is wasteful since each register is 32 bits anyway.

So we'll use a single register and slice out one bit for enabling the counter, and another bit for
resetting it. Either copy your existing slice block (copy-paste it or hold ctrl while dragging/dropping it)
or add two more from the library.

The enable and reset ports of the counter require boolean values (which Simulink interprets
differently from ordinary 1-bit unsigned numbers). Configure the slices as follows:

Page 12 of 24

Slice for enable:

Slice for reset:

Page 13 of 24

5.3.10 Connect it all up

Now we need to connect all these blocks together. To neaten things up, consider resizing the slice
blocks and hiding their names. Their function is clear enough from their icon without needing to see
their names.

Do so by right-clicking and selecting Format → Hide Name. You could do this with the counter too,
but it's not a good idea with the software registers, because otherwise you wouldn't know how to
address them when looking at your diagram.

5.4 Adder

To demonstrate some simple mathematical operations, we will create an adder. It will add two
numbers on demand and output the result to another software register. Almost all astronomy DSP is
done using fixed-point (integer) notation, and this adder will be no different.

We will calculate a+b=sum_a_b.

Page 14 of 24

5.4.1 Add the software registers

Add two more input software registers. These will allow us to specify the two numbers to add. Add
another output register for the sum output.

Either copy your existing software register blocks (copy-paste or holding ctrl while dragging/dropping
it) or add three more from the library. Set the I/O direction to From Processor on the first two and set
it to To Processor on the third one.

5.4.2 Add the adder block

Locate the adder/subtractor block, Xilinx Blockset -> Math -> AddSub and drag one onto your
design. This block can optionally perform addition or subtraction. Let's leave it set at it's default, for
addition.

Page 15 of 24

The output register is 32 bits. If we add two 32 bit numbers, we will have 33 bits.
There are a number of ways of fixing this:

*) limit the input bitwidth(s) with slice blocks
 *) limit the output bitwidth with slice blocks

*) create a 32 bit adder.

Since you have already seen slice blocks demonstrated, let's try to set the AddSub block to
be a 32 bit saturating adder. On the second tab, set it for user-defined precision, unsigned 32 bits.

Also, under overflow, set it to saturate. Now if we add two very large numbers, it will simply return
2^32 -1.

5.4.3 Add the scope and simulation inputs

Either copy your existing scope and simulation constants (copy-paste or ctrl-drag) or place a new
one from the library as before. Set the values of the simulation inputs to anything you like.

5.4.4 Connect it all together

Like this:

Page 16 of 24

6 Simulating
The design can be simulated with clock-for-clock accuracy directly from within Simulink. Set the
number of clock cycles that you'd like to simulate and press the play button in the top toolbar.

You can watch the simulation progress in the status bar in the bottom right. It will complete in the
blink of an eye for this small design with just 10 clock cycles.
You can double-click on the scopes to see what the signals look like on those lines. For example, the
one connected to the counter should look like this:

The one connected to your adder should return a constant, equal to the sum of the two numbers you
entered. You might have to press the Autoscale button to scale the scope appropriately.

Once you have verified that that design functions as you'd like, you're ready to compile for the
FPGA.

Page 17 of 24

7 Compiling
Essentially, you have constructed three completely separate little instruments. You have a flashing
LED, a counter which you can start/stop/reset from software and also an adder. These components
are all clocked off the same 100MHz system clock crystal, but they will operate independently.
In order to compile this to an FPGA bitstream, type bee_xps on the Matlab command line. Leave all
options on defaults. Ensure that the listed design is the one you want to compile (System Generator
Design Name). If it is not, click anywhere on your design such that it is the highlighted window, then
click gcs. To start the process, simply click RUN XPS.After compilation , it creates a directory
named after the model file name without the .mdl extension. There is a sub directory named
bit_files. In this bit_files directory there are .bit and .bof file. We need the .bof file to program
the FPGA. You need to save this .bof file at location [FPGA_PROG_BOF_DIR] .

Compile time is approximately 4 minutes on the above mentioned computer. When complete, you
should receive a popup box like this:

Page 18 of 24

6 Programming the FPGA using BORPH

1. Copy the bof file to be programed which is compiled by you in the directory
“[FPGA_PROG_BOF_DIR]” after changing the permissions of the file.

eg. for the bof file
[TUT1_BOF_FILE] in the area [STD_BOF_DIR]
$ chmod a+x [STD_BOF_DIR]/[TUT1_BOF_FILE]

$ cp [STD_BOF_DIR]/ [TUT1_BOF_FILE] [FPGA_PROG_BOF_DIR]

Note : All these cable connections and entries in the /etc/* files of the workshop PCs done.
2. Connect the Serial port cable between the ROACH board's P2 connector and serial port of the
PC (on which minicom program exists).

3. Connect the Ethernet cable to J25 port of the ROACH board from the PCs eth1 port. /etc/ethers
file should have mac address and corresponding ip address. In the /etc/network/interfaces file ,
eth1 should be configured. And in the file /etc/hosts , ip address and corresponding roach
board(host) name entry to be done.
4. Start the minicom program after login as root.

eg. $ minicom
 Initializing Modem
Welcome to minicom 2.2
OPTIONS: I18n
Compiled on Mar 9 2007, 07:21:40.
Port /dev/ttyS0

Press CTRL-A Z for help on special keys.

NOTE : Press CTRL + A and then Z ; to get Minicom command summary.
 Then press W for Line Wrap ON/OFF. This enables us to see the messages from the
ROACH board during BOOT-UP.

5. Switch ON the ROACH board.. Refer the file “[DOC_DIR]/[ROACH_BOOT_PROC_FILE]” for
complete boot procedure of the ROACH BOARDs. For this purpose it is not required to refer.
6. roach030172 login: root # login as root w/o any password.
7. root@roach030172:/# cd /boffiles/
8. root@roach030172:/boffiles# ls #The ouput display on your PC may be different.

imh_tut1a_2011_Jul_18_1439.bof
 tut1_intro_ise_2011_Jul_13_1555.bof

tut2_10gbe_2011_Jul_05_1639.bof
tut3_r_spec_2048_r105_2011_Jul_06_1251.bof
tut4_poco_wide_10_r314_2011_Jul_06_1525.bof
tut5_gpu_spec_2011_Jul_06_1707.bof

root@roach030172:/boffiles#

9. root@roach030172:/boffiles# ./[TUT1_BOF_FILE] &
[1] 230
root@roach030172:/boffiles#

Our FPGA is now programmed and we have our prompt back!
 Look at the output ie LED on the ROACH board is blinking !!!

Page 19 of 24

We can now see that a process in Linux has started...
10. root@roach030172:/boffiles# ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 284 0.1 0.0 0 0 ? SN 07:36 0:00 [jffs2_gcd_mtd3]
root 301 0.0 0.2 6700 1160 ? Ss 07:36 0:00 /usr/sbin/sshd
root 311 0.0 0.0 784 192 ? S 07:36 0:00 tcpborphserver
root 318 0.1 0.2 3772 1188 ttyS0 Ss 07:36 0:00 /bin/login -root
319 0.1 0.3 3516 1796 ttyS0 S+ 07:36 0:00 -bash
root 323 0.0 0.0 1632 304 ttyS0 S 07:36 0:00 ./tut1_2009_Aug_14_1140.bof
root 325 4.4 0.5 10000 2672 ? Ss 07:36 0:00 sshd: root@pts/0
root 328 0.8 0.3 3524 1800 pts/0 Ss 07:36 0:00 -bash
root 332 0.0 0.1 2780 996 pts/0 R+ 07:37 0:00 ps aux
root@roach030172:/boffiles#

Notice that PID “230” (yours may be different) is our process. We can now navigate to the
proc directory which contains our software registers.

11. root@roach030172:/boffiles# cd /proc/230/hw/ioreg/ #Pl chage the PID nuber if different.
12. root@roach030172:/proc/230/hw/ioreg# ls -al
total 0
dr-xr-xr-x 2 root root 0 Aug 21 08:00 .
drwxr-xr-x 2 root root 0 Aug 21 08:00 ..
-rw-rw-rw-1 root root 4 Aug 21 08:00 a
-rw-rw-rw-1 root root 4 Aug 21 08:00 b
-rw-rw-rw-1 root root 4 Aug 21 08:00 Counter_ctrl1
-r--r--r--1 root root 4 Aug 21 08:00 Counter_value
-r--r--r--1 root root 4 Aug 21 08:00 sum_a_b
-rw-rw-rw-1 root root 4 Aug 21 08:00 sys_board_id
-rw-rw-rw-1 root root 4 Aug 21 08:00 sys_clkcounter
-rw-rw-rw-1 root root 4 Aug 21 08:00 sys_rev
-rw-rw-rw-1 root root 4 Aug 21 08:00 sys_rev_rcs
-rw-rw-rw-1 root root 4 Aug 21 08:00 sys_scratchpad
root@roach030172:/proc/230/hw/ioreg#

Now you can see all our software registers. We have a, b, counter_ctrl, counter_value and
sum_a_b as expected. However, in addition, the toolflow has automatically added a few other
registers.

sys_board_id is simply a constant which allows software to identify what hardware platform
is running. For ROACH, this is a constant 0xb00b001.

sys_clkcounter is a 32-bit counter that increments automatically on every FPGA clock tick.
This allows software to estimate the FPGA's clock rate. Useful for debugging boards with bad clock
inputs.

sys_rev is not yet implemented, but will eventually indicate the revision of the software
toolchain that was used to compile the design

sys_rev_rcs is also not yet implemented, but will eventually indicate the SVN revision of the
CASPER library that was used to compile your design.

sys_scratchpad is simply a read/write software register where you can write a register and
read it back again as a sanity check.

Page 20 of 24

7 Communicating with your FPGA process in BORPH

The registers contain binary data. To read and represent these on our text-based terminal,
we will use a Linux utility called hexdump, which simply prints out the ASCII representation of hex
values (base-16) in binary files. To write into these files, we'll use Linux's echo utility. Echo does not
support writing hex values, but does support octal (base-8).

COUNTER

Let's start by having a look at our counter value. Since we haven't started it yet, we expect it
to be zero.

1. root@roach030172:/proc/230/hw/ioreg# hd Counter_value
00000000 00 00 00 00 |....|
00000004
root@roach030172:/proc/230/hw/ioreg#

We notice that the register is indeed 32 bits long and that it contains the value zero. The
column on the left tells us the memory addresses, while the four space separated values on the right
give us the 4 byte (32 bit) value of the software register in hexadecimal. Right now, both registers
report all zeros. According to our Simulink design, we can disable or enable the counter by setting
cnt_en to 0 or 1 respectively.

Let's now start the counter and watch it increment.
2. root@roach030172:/proc/230/hw/ioreg# echo -n -e "\000\000\000\001" > Counter_ctrl1

Here we have told echo not to append a newline character to the end of the line (-n), and
told it to interpret the incoming string's escape characters (\0 specifies octal values). Then we pipe
it's output into counter_ctrl1. Now let's relook at the counter value...

3. root@roach030172:/proc/230/hw/ioreg# hd Counter_value
00000000 da 12 42 de |..B.|
00000004

4. root@roach030172:/proc/230/hw/ioreg# hd Counter_value
00000000 dd 32 7c 3c |..w.<|
00000004

 '' '' '' '' '' '' '' '' ''
You can see that the counter is indeed incrementing, and that it is happening very quickly

(remember that it's incrementing by 100 million every second, since the FPGA is running at
100MHz).
0xda1242de = 14291522 in decimal.
0xdd327c3c = 3711073340 in decimal.

You should see the register values increasing until they reach 2^32-1 and then repeat.
Resetting the counter has the desired effect...

5. root@roach030172:/proc/230/hw/ioreg# echo -n -e "\000\000\000\002 Counter_ctrl1
6. root@roach030172:/proc/230/hw/ioreg# hd Counter_value
00000000 00 00 00 00 |....|
00000004
root@roach030172:/proc/230/hw/ioreg#

Page 21 of 24

 ADDER :
Let's now consider our adder: All registers initialise to zero upon startup, so we'd expect a

and b to be zero now.

7. root@roach030172:/proc/230/hw/ioreg# hd a
00000000 00 00 00 00 |....|
00000004

8. root@roach030172:/proc/230/hw/ioreg# hd b
00000000 00 00 00 00 |....|
00000004

Indeed, this is the case. Let's write something in there now and have a look at the output.
Let's add 5 and 12, so we expect 17. We use 0x to indicate hex, 0o for octal and 0b for binary. No
prefix indicates decimal.
05 = 0o05 = 0x05
12 = 0o14 = 0x0c
17 = 0o21 = 0x11
 Note : Inpu the data as OCTAL by using \0 eg \005 for decimal 5 & \014 for 12.

9. root@roach030172:/proc/230/hw/ioreg# echo -n -e "\000\000\000\005" > a
10. root@roach030172:/proc/230/hw/ioreg# echo -n -e "\000\000\000\014" > b
11. root@roach030172:/proc/230/hw/ioreg# hd a
00000000 00 00 00 05 |....|
00000004

12. root@roach030172:/proc/230/hw/ioreg# hd b
00000000 00 00 00 0c |....|
00000004
13. root@roach030172:/proc/230/hw/ioreg# hd sum_a_b
00000000 00 00 00 11 |....|
00000004

Note : Inpu the data as HEXADECIMAL by using \x. eg \005 for decimal 5 & \x0c for 12.
14. root@roach030172:/proc/230/hw/ioreg# echo -n -e "\000\000\000\x05" > a
15. root@roach030172:/proc/230/hw/ioreg# echo -n -e "\000\000\000\x0c" > b
16. root@roach030172:/proc/230/hw/ioreg# hd a
00000000 00 00 00 05 |....|
00000004
17. root@roach030172:/proc/230/hw/ioreg# hd b
00000000 00 00 00 0c |....|
00000004
18. root@roach030172:/proc/230/hw/ioreg# hd sum_a_b
00000000 00 00 00 11 |....|
00000004
root@roach030172:/proc/230/hw/ioreg#
19. Press CTRL + A and then Q to QUIT from the minicom. Then exit from root.
 Great! Exactly as expected.

This shows you a basic view of BORPH and interfacing to the proc files directly from the
ROACH using Linux utilities. This method of accessing the shared memory and registers is good for
quick verification that your design is running and loaded correctly, but for more advanced command,
control and data acquisition, we recommend using the tcpborphserver and KATCP that starts up
automatically when booting ROACH.

Page 22 of 24

8 PROGRAMMING THE FPGA using KATCP.

KATCP is a process running on the ROACH boards which listens for TCP connections on
port 7147 (tcpborphserver). It talks using machine-parseable ASCII text strings. It was designed this
way so that it is easy to debug by watching the exchange of network traffic, while still being easy to
program clients and servers.
Note : steps 1 , 2 & 3 are need not to be done here again .

1. Copy the bof file to be programed which is compiled by you in the directory
“[FPGA_PROG_BOF_DIR]” after changing the permissions of the file.

eg. for the bof file
[TUT1_BOF_FILE] in the area [STD_BOF_DIR]
$ chmod a+x [STD_BOF_DIR]/[TUT1_BOF_FILE]

$ cp [STD_BOF_DIR]/ [TUT1_BOF_FILE] [FPGA_PROG_BOF_DIR]

 Note : All these cable connections and entries in the /etc/* files of the workshop PCs done.
2. Connect the Ethernet cable to J25 port of the ROACH board from the PCs eth1 port. /etc/ethers
file should have mac address and corresponding ip address. In the /etc/network/interfaces file eth1
should be configured. And in the file /etc/hosts ip address and corresponding roach board(host)
name entry to be done.

3. Switch ON the ROACH BOARD.Refer the file “[DOC_DIR]/[ROACH_BOOT_PROC_FILE]”
for the complete boot procedure of the ROACH BOARDs. But not required for this purpose.

4. From the PC connect to the ROACH via net using the command ;
 telnet <ROACH IP assigned> <port #> note : port # is 7147 decided by protocol.

eg. $ telnet 192.168.100.72 7147
Trying 192.168.5.251...
Connected to 192.168.5.251.
Escape character is '̂]'. : To quit from this Press “CTRL” + “]” (bracket])

 then enter. And then quit from it.
#version poco-0.1
#build-state poco-0.0a271150300
5.?listbof : To see the BORPH (*.bof) files on the ROACH for programming FPGA. Pl. notice
that commands are starting with ? in the front. The files below may be different in your PC!
 imh_tut1a_2011_Jul_18_1439.bof
 tut1_intro_ise_2011_Jul_13_1555.bof #This is file to be programmed in the FPGA!

tut2_10gbe_2011_Jul_05_1639.bof
tut3_r_spec_2048_r105_2011_Jul_06_1251.bof
tut4_poco_wide_10_r314_2011_Jul_06_1525.bof
tut5_gpu_spec_2011_Jul_06_1707.bof

!listbof ok 6
6.?progdev <borph file> : This puts the bof program file in the FPGA.

eg. ?progdev [TUT1_BOF_FILE]
!progdev ok 231

Page 23 of 24

9 Communicating with your FPGA process in KATCP

1. ?listdev
#listdev sum_a_b
#listdev b
#listdev a
#listdev Counter_value
#listdev Counter_ctrl1
#listdev sys_clkcounter
#listdev sys_scratchpad
#listdev sys_rev_rcs
#listdev sys_rev
#listdev sys_board_id
!listdev ok

Here you can see we have the same list as we had before in BORPH.
Normally, machines using this interface would read and write to these registers using raw

binary numbers using the read or write commands. For manual interaction, there are wordwrite and
wordread commands which do the same with ASCII hex representations of 32-bit values. Let's try
and add two numbers together now.

2. ?wordwrite a 0 0x02
!wordwrite ok
3. ?wordwrite b 0 0x07
!wordwrite ok
4. ?wordread sum_a_b 0
!wordread ok 0x9

You may be wondering what the extra zero in the arguments is for. This is the index offset. It
is used when writing to blocks of memory, rather than software registers. For example, if you wanted
to write a single 32 bit number into a 1GB DRAM memory chunk, at address 0x12808, you would
say ? wordwrite <my_dram> 0x12808 <my_value>.

As you can see, the same FPGA functions that are available in BORPH are accessible
through KATCP, with the difference that it can be configured remotely over a TCP network stream.

10 Conclusion :

This concludes Tutorial 1. You have learnt how to constuct a simple Simulink design,
transfer the files to a ROACH board and interact with it using BORPH and KATCP.

Page 24 of 24

	1 The Hardware and Software required for this tutorial.
	2 The final view of the design
	3 Introduction
	4 Setup
	5 Creating Your Design
	5.1 Create a New Model:
	5.2 Add Xilinx System Generator and XSG core config blocks:
	5.3 Flashing LED
	5.3.1 Add a counter
	5.3.2 Add a slice block to select out the msb
	5.3.3 Add a GPIO block
	5.3.4 Add a terminator
	5.3.5 Connect your design
	5.3.6 Software control
	5.3.7 Add the software registers
	5.3.8 Add the counter
	5.3.9 Add the slice blocks
	5.3.10 Connect it all up

	5.4 Adder
	5.4.1 Add the software registers
	5.4.2 Add the adder block
	5.4.3 Add the scope and simulation inputs
	5.4.4 Connect it all together

	6 Simulating
	7 Compiling
	6 Programming the FPGA using BORPH
	7 Communicating with your FPGA process in BORPH
	8 PROGRAMMING THE FPGA using KATCP.
	9 Communicating with your FPGA process in KATCP
	10 Conclusion :

