Technical Note on New MCM program

using USB-RS485 FTDI converter cable

June 29th 2012

This short document describes Software and hardware aspect of New program
for MCM which can be used for MCM communication on Linux operating system

GMRT-NCRA

Pune

Concern GMRT Team :

R Balasubramanian

| RajuUprade |
| CharuKanade |
|G Satheesh |
| Naresh Sisodiya |
| Mahadev Mishal

Raju Uprade
Charu Kanade
C. Satheesh
Naresh Sisodiya
Mahadev Mishal



Table of Content

1. Introduction
1.1. Linux PC/MCM communication
1.2.  The RS-485 multi-drop protocol ( 9" bit protocol )

1.3. Problem statement

2. Technical Solution
2.1. Hardware device

2.2.  Application software

3. List of commands

4. Testing in the ABR lab and Receiver room

5. Testing in Front end lab

6. Snapshot

7. SOP

8. Future enhancement

9. References

Appendix ....



Introduction

Monitor and Control Modules (MCM) are the final part of the
Telemetry System. They are single cards distributed at all the remote
antennas and inside the CEB, doing the interface to all the settable GMRT
sub units. The typical monitor points are LO levels, power supply voltage
and switch status of Front End, Intermediary Frequency and Baseband
systems.

Typically a MCM scans some specified analog channels, digitizes the
signals, and stores the data into its internal memory. It can also output a 16-
bit word for wvarious control applications (control lines of external
multiplexers, power switching, electromechanical devices control...).

Each MCM is connected to an Antenna Based Computer (ABC) with a
RS-485 shared serial link, using the 9" bit multi-drop protocol (explained in
next chapter). The basic functions of the MCM software is to accept a
command from ABC, to execute it, and to transmit the answer to ABC. The
list of available commands is also detailed further.

1.1. Linux PC / MCM communication :

The MCM / ABC connection can be replaced by a MCM / PC link, so
that any MCM can be used directly from a PC, without passing through the
whole Telemetry chain. Any point accessible from a MCM can thus be
directly controlled, monitored and tested for maintenance or evolution
purposes.

We have a Linux based mcmcom program which uses a serial device
driver called mem-driver for MCM communication using 9" bit protocol. This
Linux based is running successfully in Lab as well as Antenna base.

1.2 The RS-485 multi-drop protocol ( 9™ bit protocol ) :

The Linux PC is following the same protocol with MCMs than any ABC
does. So the PC can be connected to many MCMs through a shared RS-485



serial link. That means that data will be transferred on the same lines
regardless to which MCM they are associated with. This paragraph explains
how the “9" bit” protocol, also called “multi-drop” protocol, organizes this
communication.

In this configuration, the PC is the communication host. MCMs cannot
spontaneously write to the PC, they only answer the host whenever they are
requested. The PC talks to only one MCM at a time, others remaining
dormant. By default the PC port is in reading mode, it just switches to its
writing mode only for the time it writes to a MCM (cf. hardware paragraph).

Two kind of bytes can be transmitted from the PC: the address bytes
and the data bytes. In asynchronous serial communication, a byte is sent
with a start bit first, then the 8 bits, an optional parity bit, and a stop bit. In
this application, the 9™ parity bit is set to 'l' when the byte is an MCM
address, and to '0' otherwise.

The PC sends a packet of bytes, among which the first byte is an
address one. Originally all MCMs are in a state where they can only read an
address byte. If a MCM recognizes its address, then it reads the following
data bytes, processes the command and answers to the PC.

1.3 Problem statement :

As new laptop don't have serial port, so we cannot use mcmcom
program on laptop for field testing.We were in need to find a suitable
hardware and software solution so that laptop can be used for field testing.
Intially we purchased USB-To-Serial port product of Prolific Technology,
these were normal serial port which supports even, odd and none parity
only.As we are using RS485 multidrop protocol, We needed the mark and
space parity to specify address byte and data bytes but that wasn't possible
using simple USB-To-Serial port through application program. We changed
the PL2303 device driver to suit our need.We were successful in transmitting
data from PC to MCM but eventually all hardware device failed.



Technical Solution

2.1 Hardware device :

As all our low cost hardware device failed, we searched for standard
USB-To-Serial device which will have support for mark and space parity.we
found out product from FTDI meets out requirement. After going through
the technical data sheet we finalized two products from FTDI.

USB-COM485-PLUS]T  gs
(€)2008 FTOI Ltd, o W%
@ ca : ‘n:
o ¥ Beig ca
Clg.l bkl &
TR € 8 8 mo
R M- |
% : oM

s ey \
L R A
N WO

USB to RS485 converter cable USB to RS485 Adapter Module

2.2 Application Program :

— As both product has support for mark and space parity, we
Appl}CaUOﬂ program do not need to go into the device driver level. An application
using FTDI APIs program solved our purpose.

D2XX drivers Figure shows the software architecture for the New MCM
program. On the top is the application program which
communicated to the D2XX drivers using FTDI APIs. D2XX

USB device drivers allow direct access to the USB device through a DLL.

Application software can access the USB device through a

Actual hardware series of DLL function calls. The functions available are listed
device in the D2XX Programmer's Guide document.

Software Architecture FTDI provides libftdi library which we need to install on our

PC to complie the program.

Using the FTDI APls we were able to write an application
program which is used for MCM communication.


http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer%27s_Guide%28FT_000071%29.pdf%22%20%5Ct%20%22_blank

List of commands available in the MCM program :

0 set mcm address
1 nul cmd

2 set idle mode

3 set scan mode
4 set an mask

5 set dmask 16b
6 set dmask 32b
7 read an mask

8 read dmask 16b
9 read dmask 32b
10 read_version
11 read mode

12 reboot

13 FE control old
14 feed data monitoring
15 FE control new
16 fe box mon

17 common box mon
18 set dmask 64b
19 read dmask 64b
20 set mean mode
21 SET LO

22 SET FE

23 SET IF

24 EXIT




Testing in ABR lab and Receiver room :

ABR lab has been given USB-RS485 device number
“FTUN7KZE” for their lab testing. While testing in ABR lab and Receiver
room we encountered two problems.

e New MCM program was working fine with Telemetry laptop in both
places but it was not working with ABR lab laptop as well as with
receiver room machine. So we adjusted the delay between address and
data bytes to 4000 microseconds after which basic communication
started working.

e While trying to Set digital 16,32 and 64 bit, we found out that we have
to reverse the byte order in order to set the digital mask. We modified
the New MCM program code to have the reverse byte order logic. With
the modified code, we were able to set 155, 325, 255 MHz LO.

Testing in Front end lab:

Front end lab has been given USB-RS485 device number
FTSERRSI1 for their lab testing. We installed the New MCM program using
USB-Rs-485 device on old laptop. We successfully tested the program in
Front end lab with their hardware setup. We were able to set bandwidth,
noise,swap,RF and attenuation.

e While testing in Front end lab, Mr. Anil Raut suggested to write a
script to disable the default USB driver at the time of plugging in the
USB to RS 485 converter module to PC/LAPTOP (as
required by program).

e We made the suggested changes in the mcmtest.c program,It looks for
the default drivers and if drivers are loaded, program removes the
drivers. Now there is no need to manually unload the default drivers.

e Modified MCM program has been installed in Front end lab and ABR
lab,and it's working fine.



Snapshots :

Snapshot shows both hardware device plugged into the PC USB
port and on the other side connected to multiple MCMs.

Snapshot below showing the output terminal when we run the program :

$$$5$5$5$555$5$555$5$$5$$5$$$$$5$$$$$$$ TIME TO ENTER NEW COMMAND $$$$$$$$$$$$$$5$$$$$5$$$$$
: set_mcm_address
:nul_cmd

: set_idle_mode

: set_scan_mode

: set_an_mask

: set_dmask_16b

: set_dmask_32b

: read_an_mask

: read_dmask_16b

: read_dmask_32b

10: read_version

11: read_mode

12: reboot

13: FE_control_old

14: feed_data_monitoring
15: FE_control_new

CONNDDTURAWNR=RO



16: fe_box_mon

17: common_box_mon
18: set_dmask_64b

19: read_dmask_64b
20: set_mean_mode
21: SET_LO

22: SET_FE

23: SET_IF

24: EXIT

Enter New Command from the list==>1
nul_cmd

Mcm addr 2

Device opened successfully

Device SET timeout ok

FT_SetRTS(0)

FT_SetBaudRate(0)

SET FT_SetDataCharacteristics(0)
SET FT_SetDataCharacteristics(0)
FT_ClearRTS(0)

HiHHHEH RESPONSE FROM THE SY STEMHHHHEHHHHE
MCM ADDRESS IS=>2

PACKET LENGTH IS=>10

MCM RESPONSE BUFFER [0] = 0x00
MCM RESPONSE BUFFER [1] = 0x00
MCM RESPONSE BUFFER [2] = 0x00
MCM RESPONSE BUFFER [3] = 0x01
MCM RESPONSE BUFFER [4] = 0x04
MCM RESPONSE BUFFER [5] = 0x00
MCM RESPONSE BUFFER [6] = 0x04
MCM RESPONSE BUFFER [7] = 0x00
MCM RESPONSE BUFFER [8] = 0xED

$$35$$355555555$555$555$$$$$$$$$$$ TIME TO ENTER NEW COMMAND $$$$$$$$$$$$$$5$55$5$555$$

SOP :

1. The MCM communication program is in Hello/MCM directory.

2. Each USB-RS485 cable has a unique serial number,which is hardcoded
in the program, So if in future we use a different USB-RS485 cable,we have
to recompile the program with new unique serial number of the device.

3. Kindly note you have to be root in order to use this program as it uses
USB device drivers.

4. Now enter into the directory and give ./mcmtest.



Future enhancement :

This version 1 software will go through lots of enhancement like,
We will try to develop a GUI for this New MCM program.

References :

o D2XX programmers guide by FTDI
o Linux device drivers
o USB host architecture



Appendix :

For ABR lab testing command number 20. SET LO has been
implemented in the new MCM program. SET LO command ask for two frequency
LO1 and LO2 as input then the program internally generates the proper 32 and
64 bit hex arguments for the LO1 and LO2. After generating the proper
arguments, program calls the set dmask 32 and set dmask 64 commands to set
the LO1 and LO2 frequency.

Snapshot of command 21:

Enter command number =>21

ENTER <LO1> <LO2>: 155 680

lo1= 155, lo2= 680

04F1A 040E5

12

HIHHEHHHHEHHHEH R
32 MASK bit 01000 09000

AR R R R R R R AR AR
32 HEX bit Argument generated 0 1 09

HHHHH R A
64 MASK bit040E5 0COES5 2FFF AFFF

FHAHH R R R R A
64 bit HEX Argument generated e 4 e c ff 2f ff af

2
HiHHHHHE R
64 MASK bit0168 8168 1001 9001
B R R R R R R R
64 bit HEX Argument generated 68 1 68 81 1 10 1 90
Hiat i d LGB R e g e L B B
32 MASK bit 6005 E015
R R R R
32 HEX bit Argument generated 5 60 15 e0

3
HHHHE R R R
32 MASK bit 01000 09000
HiHHHHHE R
32 HEX bit Argument generated 0 1 09
B R R R R R R R
64 MASK bit40C6 COC6 2FD3 AFD3
Hiat i d LGB R e g e L B B
64 bit HEX Argument generated ¢6 40 c6 c0 d3 2f d3 af

3

HHHEHHEHEH
64 MASK bit0258 8258 1008 9008

HEHHHE R
64 bit HEX Argument generated 58 2 58 82 8 10 8 90
HHHEHEHEHEHEH
32 MASK bit 6005 E015

HHHHHEHE
32 HEX bit Argument generated 5 60 15 e0



	1.1. Linux PC / MCM communication :

